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P          R          E          F          A          C          E

Statistix is a very fast, easy-to-use data analysis program designed to
encourage you to “play” with your data.  Manipulating data becomes simple
and straightforward, allowing you to focus on your research and not your
software.  

Capabilities 

of Statistix

•  Descriptive statistics
•  Nonparametric tests
•  Linear regression
•  Stepwise regression
•  Logistic regression
•  Analysis of variance/covariance
•  T tests
•  Survival analysis

•  Residual analysis
•  Association tests
•  Probability functions
•  Time series analysis
•  Statistical process control
•  Powerful transformations 
•  Graphs

Features

of Statistix

•  Compact—less than 4M disk space
•  Excel, 1-2-3, and Access support
•  Interactive design
•  On-line help 

•  Spreadsheet data editing
•  Free technical support
•  Fast
•  Accurate

System

Requirements

Statistix runs on Windows based personal computers.  It requires
Windows 95 or a later version of Windows.  A minimum of 16 MB of RAM
is recommended.

What’s

Included

Statistix for Windows includes this manual, program CD, and a registration
card.  Please mail us your registration card to receive: (1) free technical
support, (2) special upgrade prices, and (3) product announcements.

Technical

Support

Should you need help using Statistix, call our office for free technical
support at 850-893-9371 Monday-Friday, 9:00 a.m.-5:00 p.m. Eastern Time. 
You can fax us at 850-894-1134 or send email to support@statistix.com
anytime.
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C        H        A        P        T        E        R

1

Introduction

Welcome to Statistix 8, our latest data analysis software designed for the
Windows operating system.  This version introduces several new
enhancements making Statistix more useful than ever. These include: a new
GLM algorithm for improved analysis of unbalanced AOV designs, Latin
Squares, Balanced Lattice, Fractional Factorials, Two-Stage Least Squares
Regression, and Stepwise Logistic Regression.

The emphasis in the design of Statistix has always been to make it quick and
easy to obtain concise reports that answer your data analysis questions.
Whether you are a professional statistician or a researcher with your own
data to analyze, whether you do data analysis every day or only
occasionally, you’ll find that Statistix will quickly and easily help you find
the answers you’re looking for.

Statistix is fast, compact, and accurate. The user’s manual is clear and
concise, complete with examples and references.

Fans of Statistix love it because it’s intuitive and easy to use.  Statistix
encourages the kind of creativity that marks the difference between good
and routine data analysis.  By its very design, Statistix invites you to be
adventurous—to explore, play around, and get to know your data. 

So jump in and get started.  
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Using This Manual

If you’re like most people, you’ll run the software before reading the
manual.  That’s OK with us because Statistix is far easier to use than it is to
read about.  However, if you haven’t tried Statistix yet, install the software
now by following the directions in the Installing Statistix section on the next
page.  Explore the Statistix menus and play around with the Statistix dialog
boxes used to run statistical procedures.  You can open one the sample data
files supplied with Statistix (cholesterol.sx is good one to start with) or
enter a small data set of your own.  Get a feel for the program; it’ll make it
easier to understand the manual.

Once you’ve experimented with the software, read the rest of Chapter 1. 
The section titled The Statistix Menus describes how to use the menus. 
Two sections—Data in Statistix and Getting Data In and Out of
Statistix—give an overview of how data are handled.  Statistix Dialog
Boxes is an important section that describes how to make efficient use of
the dialog boxes used for model specification.

The Preferences procedures are discussed at the end of this chapter.  Use
them to specify your preferences for variable list order, date formats, graph
colors, and other options. 

As you develop your Statistix skills, make it a high priority to read Chapter
2 on the Data Menu and Chapter 3 on the File Menu.  Chapters 4 through 13
describe the statistical analysis procedures available in Statistix—Summary
and Descriptive Statistics; One, Two, & Multi-Sample Tests; Linear
Models; Analysis of Variance; Association Tests; Randomness/Normality
Tests; Time Series; Quality Control; Survival Analysis; and Probability
Functions.

It’s a good idea to at least skim these chapters so that you’re aware of the
range of Statistix’ capabilities.  If you come across statistical procedures
with which you’re unfamiliar, study the examples and references until you
have a general understanding of when the analyses would be useful.  The
details of how the analyses are performed are unimportant; you can always
look them up when needed.  However, to fully utilize Statistix, you need to
know which tools to apply to which tasks.

The Statistix manual provides useful background.  Used in conjunction with
appropriate references, it’s a valuable learning tool.  

2 Statistix User's Manual



Installing Statistix

The Statistix software comes on one CD. You can’t run Statistix directly
from the distribution CD. You must install Statistix on a fixed disk (hard
disk).  You must be running Windows 95 or later to run the Statistix
installation program.

Insert the Statistix CD into your computer.  On most computers, the
installation program will start automatically. If it doesn’t, use the Run
command to start the installation program. Type e:setup in the Open box of
the Run dialog.  (If your CD is not e:, substitute the correct letter.)  Follow
the on-screen instructions to complete the installation.  A Statistix folder is
created to store the program files (usually Statistix) and a Statistix group is
created on the Program folder of your Windows Start menu.  

To run Statistix, click on the Statistix icon.  You can view the ReadMe file
for additional information by clicking on the ReadMe icon.

The Statistix Menus

When you first run Statistix, an empty spreadsheet is displayed and the main
menu appears above it.  The main menu, or the spreadsheet menu, is visible
whenever the spreadsheet window is the active window.  All of the items on
the main menu are themselves menus.  These menus offer a variety of data
management and statistical procedures.  An example empty spreadsheet and
menu appears on the next page.

To select a pull-down menu, use your mouse to point and click on the name
of the pull-down menu.  You can also select a pull-down menu by holding
down the Alt key and pressing the character underlined in the menu name
(e.g., Alt-F for File).  Point and click to select a menu item from the pull-
down menu or press the letter underlined in the name.

The File menu includes procedures to open and save Statistix data files, and
to import data from other programs.  The Data menu offers a number of
procedures to manipulate the spreadsheet data including a powerful 
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Transformations procedure.  The Statistics menu lists several topic menus
as shown above offering both basic and advanced statistical analyses.  The
Window menu lists the windows within Statistix, which include the
spreadsheet window and results windows.  Use the Windows menu to
switch between the windows in Statistix.

Exit Statistix by selecting the Exit procedure from the File menu, or by
clicking on the close button in the upper-right corner of the window.

Before attempting to use a statistical procedure, you must either create a
data set using the Insert procedure on the Data menu, or retrieve a data set
from disk using either the Open or Import procedure on the File menu.

In addition to the statistics menus listed above, the regression, analysis of
variance, and several of the time series procedures display results menus
after the initial analysis is specified and computed offering additional
analyses.
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Data In Statistix

In this section, we give an overview of how data are handled once entered
into Statistix.  The following section describes ways to get your data into
Statistix.  More details about data handling are given in Chapter 2.

Variables and

Variable

Names

Data in Statistix can be viewed as a rectangular table of values.  The col-
umns of the data table are called variables, and the rows are called cases. 
All data in Statistix are referenced by variable names that you assign when
data are entered.  A variable name is one to nine characters in length, must
begin with a letter, and can only consist of letters, digits, and the underscore
character.  You should assign meaningful variable names to help you
remember what they represent.  There are a few words reserved for other
tasks, such as CASE, M, PI, and RANDOM, that you cannot use as variable
names.

Variable names are used to manipulate the data.  For example, a new
variable VOLUME can be created from the variables HEIGHT and BASE
using the Transformations procedure as follows:

  VOLUME = PI ( HEIGHT ( SQR (BASE)

PI and SQR are examples of built-in functions available in Transformations,
which we’ll discuss in detail in Chapter 2.

Variable names are used to specify the source of data for statistical
analyses.  For example, to specify the regression of HEAT on CHEM1 and
CHEM2 using the Linear Regression procedure, select the name HEAT for
the dependent variable.  Then select the names CHEM1 and CHEM2 for the
independent variables.

Data Types Statistix can handle four types of data: real, integer, date, and string.  A
variable can only contain values of one data type.  The data type of a
variable is established when you create the variable and can be changed to a
different data type using the Transformations procedure.

The “real” data type is used to represent floating point numbers (e.g.,
1.245).  This format is the most flexible offered by Statistix and is used as
the default data type when creating new variables.
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Integer data in Statistix are whole numbers in the range -32767 to 32767. 
This data type uses only 25% as much space as the real data type.  You can
use the integer data type instead of the real data type, when appropriate, to
increase the data set capacity of Statistix.  This will also save disk space by
reducing the size of Statistix data files.

The “date” data type is used to represent dates (e.g., 12/31/1992).  See
General Preferences on page 15 for an option to select the order of month,
day, and year.

The “string” data type is used to enter alphanumeric data, such as a
subject’s name.  String variables can be used as grouping variables for
statistical procedures that compute results by group.

Cases and

Data Subsets

The rows in the rectangular data table are called cases.  The cases are
numbered sequentially.  The case numbers are listed on the left side of the
spreadsheet window.  The Case function in Transformations and
Omit/Select/Restore Cases provides a method to refer to the case numbers.

Sometimes you’ll want to temporarily work with a subset of all data cases. 
The Omit/Select/Restore Cases procedure can be used to “hide” specified
cases from the system.  The subset selection is based on a condition that you
specify.  

  OMIT IF (HEIGHT > 5) AND (WEIGHT < 100)

Until specified otherwise, Statistix only “sees” cases not omitted using the
omit statement.  The cases are not deleted, but hidden.  You can easily
restore the hidden cases anytime.  Further details on Omit/Select/Restore
Cases are given in Chapter 2.

Data Set Size A Statistix data set is limited to 500 variables and 200,000 cases.  The
active Statistix data set must completely fit in the available memory.  There
is a maximum file size of 32 MB, which translates to a spreadsheet with
about 4 million cells.  Variables and cases compete for space in the data
table.  The more cases you have in a data set, the fewer variables you can
add.

Other programs running compete with Statistix for your computer’s
memory.  You can free up memory for use by Statistix by closing other
applications.
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Missing Values When data are entered into Statistix, a value of “M” is used to show a
missing value.  When data are displayed, a missing value is displayed as an
“M”.  The M function available in Transformations and
Omit/Select/Restore Cases is used to assign missing values and to make
comparisons to missing values.

All Statistix procedures examine the data for missing values and treat them
appropriately.  If arithmetic is performed on a variable containing missing
values using Transformations (e.g., A = B + C), the result of the equation
will be missing for the cases that contain the missing values.  When a
statistic, such as the mean of a variable, is calculated, only the non-missing
values for the column are used to compute the result.  The Linear
Regression procedure will drop cases that contain a missing value for either
the dependent variable or any of the independent variables.

Getting Data In and Out of Statistix

You can use three methods to enter data into Statistix:  
1) Keyboard data entry
2) Text, Excel, Lotus 1-2-3, Quattro Pro, Access, dBase, or Paradox
files
3) Statistix data files.

Keyboard data entry is performed directly on the spreadsheet window.  You
create new variables using the Insert Variables procedure found on the
Data menu (Chapter 2).  Keyboard data entry is often preferred when the
amount of data being entered is small.  

Statistix can read text files (also called ASCII files) created using a word
processor, a spreadsheet program, or some other PC program.  Statistix can
also read Excel, Lotus 1-2-3, and Quattro Pro spreadsheet files, and Access,
dBase and Paradox files.  Text files provide a standard data exchange
format between Statistix and other programs.  Use the Statistix Import
procedure to create or augment data sets using data stored in text,
spreadsheet, or database files.  Likewise, Statistix data can be exported to a
variety of programs using the Export procedure.
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While running Statistix, your data set is temporarily stored in random access
memory (RAM).  Before you exit Statistix, you should save your data set
using either the Save or Save As procedure.  A Statistix data file is a
“snapshot” of Statistix’ data memory, and it’s an ideal method of storing
data sets for future Statistix analyses.  The advantages of Statistix data files
are that they can be read and written very rapidly; are compact in terms of
the disk space occupied; and preserve such Statistix information as variable
names, labels, and the case omit status.  Statistix data files are described in
more detail in Chapter 3.  Statistix data sets are retrieved using the Open
procedure.  

A Statistix data set is dynamic.  You can increase or decrease its size in a
variety of ways.  For example, you can delete cases and variables when you
no longer need them to conserve space.  New cases and variables can be
added from the keyboard, imported from text and spreadsheet files, or
merged from Statistix data files.  You’ll often use Transformations to
create new variables.  Some of the statistical procedures can produce new
variables, too.  For example, Linear Regression can save residuals and
predicted values as new variables.  A Statistix data file can be saved at any
time.  

Statistix 8 can open data files created by earlier versions of Statistix. 
However, earlier versions of Statistix can’t open Statistix 8 files.  The Save
As procedure includes an option to save data using an older file format for
backward compatibility (see Chapter 3).

Statistix Dialog Boxes

Once you select a procedure using the menus, a dialog box is displayed on
your screen.  A dialog box is a window you use to instruct Statistix on the
details of a data management operation or statistical procedure. 

Statistix dialog boxes look like the dialog boxes you’ve seen in other
Windows applications.  They contain the familiar buttons, check boxes, list
boxes, and edit controls.  

To illustrate, we’ll examine the dialog box for the Linear Regression
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procedure displayed below.  Like most Statistix dialog boxes, this one lists
the data set variables in a list box with the heading Variables.  You specify
the regression model by moving variable names from the Variables list box
to the Dependent Variable, Independent Variables, and Weight Variable
list boxes.  

The example dialog box also has a check box with the title Fit Constant. 
You check and uncheck the box by pointing to the box using your mouse
and clicking the mouse button.  The model will fit the constant when the
box is checked.

Some Statistix dialog boxes include radio buttons and edit controls.  Radio
buttons are a group of buttons where you must select one and only one of
the choices available.  An edit control is a box that you use to enter text.

Once you’ve specified the model, press the OK button to compute and
display the results.  You can exit a dialog box without performing the
analysis by pressing the Cancel button.  Press the Help button to display
context sensitive help.

Variable

Name

Selection

Most Statistix procedures require that you specify which variables are to be
used to complete the analysis.  You do this by moving variable names from
the Variables list to one or more “target” list boxes.  In the Linear
Regression dialog box above, there are three target boxes: Dependent
Variable, Independent Variables, and Weight Variable.  
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First, highlight a variable name in the Variables list box: Point to the
variable name using the mouse and click the mouse button once.  The
background color changes to show that the variable is highlighted.  You
then press the right-arrow button next to the target box to which you want to
move the variable.  The name is deleted from the Variables list and is added
to the target box.

You can move more than one variable at a time.  To highlight several
variables, press and hold down the Ctrl key, and click each variable you
want to select.  Once you’ve highlighted all the variables you want, press
the right-arrow button to move them.  

You can highlight a range of sequential variables at once.  Click the first
variable you want to select, and then drag the cursor to the last item you
want to select.  The entire range of variables is highlighted and can be
moved by pressing an arrow button.  The order that the variables are listed
in the Variables list box affects the usefulness of this feature.  You can have
variables listed in alphabetical order or in spreadsheet order (see page 15).

In some situations you can select and move a variable from one list box to
another by double-clicking on the name.  This is a quick way to move a
variable, but it can only be used when there’s only one possible destination
for the variable selected.  For example, double-clicking a variable in the
Variables list box in the Linear Regression dialog box on the preceding
page doesn’t move the variable because there are three possible destination
list boxes.  However, you can move a variable from the Independent
Variables list box to the Variables list box by double-clicking on its name,
since the Variables list box is the only possible destination.

Saving Dialog

Boxes

The variable lists, file names, and other details that you enter on a dialog
box are automatically saved when you press the OK button.  When you
select a procedure for the second time, the data you entered previously
automatically reappear.  You can press OK and rerun the same analysis, or
you can make changes to the dialog box.  When you save a data set using
the Save procedure, the dialog box details are saved with the spreadsheet
data.  When you open the data file later, the dialog box options specified
earlier are available.
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Results Window

When you specify an analysis using a dialog box and then click the OK
button, the analysis is computed.  The resulting table or graph is displayed
in a “results window”.  The results window for a linear regression analysis
is displayed below. 

Like other windows, the results window can be resized by dragging the
sides or corners of the window.  It has minimize, maximize/restore, and
close buttons located in the upper-right corner.  When the results can’t fit in
the window, scroll bars appear that you can use to scroll through the report. 
You can also scroll the window’s contents using the arrow and page keys.

When you’ve finished with a results window, you’ll want to close the
window (although you can leave it open for later reference).  You close the
results window by pressing the close button located in the upper-right
corner, by double-clicking the control button located in the upper-left
corner, or by selecting Close from the File menu.

Results windows have their own “results menus” as can be seen in the
example above.  The results menu replaces the main spreadsheet menu
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when a results window becomes the active window.  The results menu has
five submenus: File, Edit, Results, Window, and Help.  The File menu has
Print and Save As commands you can use to print and save reports and
graphs.  The Edit menu lets you copy reports and graphs to the Windows
clipboard.  The Results menu gives you direct access to the dialog box used
to generate the report; options for changing a displayed graph; and for some
statistical procedures, options for further analysis.  The Window menu lists
the windows currently open in Statistix, and can be used to switch control to
a different Statistix window.  The Help menu accesses the Statistix on-line
help.

Printing and

Saving Reports

There are two ways to print a report or graph displayed in the active
window.  You can click on the printer icon on the toolbar, in which case the
report is printed immediately using your printer’s current settings.  You can
also select Print from the File menu, in which case the print dialog box is
displayed.  This way you get a chance to select a different printer or change
printer settings such as the page orientation.  You can also change printer
settings using the Printer Setup procedure found on the main File menu.

A results window can contain either a report or a graph.  You can save both
reports and graphs by clicking on the diskette icon on the toolbar, or by
selecting the Save As command on the File menu.  A Save As dialog box
appears, as shown below.

Reports can be saved as text files or rich text files (RTF) .  Text files are
plain ASCII files. RTF files contain text formatting information including
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font names and sizes.  Both formats are standard file formats used by many
Windows programs including Wordpad,  WordPerfect, and Word.  Reports
saved as text or rich text files can be viewed and printed using the View
Text File procedure found on the Statistix File menu (see Chapter 3).

Graphs can be saved using a choice of graphics file formats: Windows
Metafile (WMF), Enhanced Metafile (EMF), or Windows bitmap (BMP). 
The WMF and EMF formats produce compact files that can be imported by
many Windows programs including word processing and spreadsheet
programs.  Bitmap files are generally larger, but are supported by many
programs including the Windows Paint program.

There are two ways to select a graphics format when saving a graph.  One
way is to select the format from the pull-down list titled Save as file type. 
You can also specify the format you want by including the corresponding
file name extension (.EMF, .WMF, or .BMP) when you enter the file name.

The Results

Menu

When you click on the Results menu for the Linear Regression results
window pictured on page 11, the resulting pull-down menu offers several
opportunities for further analysis.

The menu choices offer additional tables of results, plots, and the option to
save residuals.  Most of the statistical procedures don’t offer further
analysis, but all of the Results menus contain the last menu item shown:
Options.  Selecting Options from a Results menu brings back the dialog box
used to specify the analysis.  This gives you direct access to the dialog box
and a convenient way to make modifications to the model specified. 

Be sure to look at the Results menus or you may be overlooking
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opportunities for further analysis.  The procedures that offer further analysis
after the initial results are displayed are listed below:

All analysis of variance procedures
Exponential Smoothing
Kaplan-Meier
Kruskal-Wallis One-Way AOV
Linear Regression
Log-Linear Models

Logistic Regression
Moving Averages
Poisson Regression
Proportional Hazards Regression
SARIMA
Two-stage Least Squares Regs

Graph Titles Procedures that produce a graph have an additional item on the Results
menu that you can use to modify the titles that appear on graphs. Selecting
Titles from the results menu displays the Titles dialog box as shown below.

You can edit, add, and delete titles from the graph.  Pressing the OK button
redisplays the graph with the new information.  Pressing the Reset button
resets all the titles back to those generated automatically by Statistix.

Switching

Between

Windows

The Window menu that appears on the results menu, as well as the main
spreadsheet menu, lists all of the Statistix windows.
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One of the Statistix windows listed is the spreadsheet window (HALD.SX
in the example on the preceding page).  Select the spreadsheet window from
the menu to gain access to the spreadsheet menu containing the Data and
Statistics menus.

Preferences

The Preferences procedures are used to configure Statistix to your taste. 
You can select variable order, date format, and graph colors.  Once you’ve
made your selections, they remain in effect until you change them again.

General

Preferences

Use the General Preferences procedure to select variable order, date format,
and report font attributes.

Statistix displays the variable names of the open data file in a list box for
most data management and statistical procedures dialog boxes.  The
variable name list can be kept in alphabetical order or in spreadsheet order. 
If you select spreadsheet order, you can reorder the variables using the
Reorder Variables command on the Data menu (see Chapter 2).  
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Variable names are stored using both upper and lower case letters. Check
the Report Variable Names in All Caps box if you’d prefer to have variable
names displayed using all capital letters in reports.

Select the date format you want to use for both data entry and reports—
month/day/year, day/month/year, or year/month/day.  You can also have
dates displayed using either two or four digits for the year.  Dates entered
with two-digit years less than the Century Cutoff for 2-digit Years value
will be entered as 21  century dates.st

Check Create backup Statistix files if you’d like Statistix to create a backup
file each time you save a Statistix file using the name of a file that already
exists.  Backup files have the extension .~sx.

You can select the font used to display reports from the Report Font Name
drop-down list.  You can also change the Report Font Size.

Graph

Preferences

There are many options regarding Statistix graphs.  These options can be
changed by selecting Graph from the Preferences menu.  The dialog box is
displayed below.
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You can select the colors used to display the various components of a graph. 
Press a color button to change the color of the corresponding component.  A
color dialog box will appear from which you can select a basic color, or
create a custom color.

You can use a number of symbols to mark points on X-Y plots (plus, start,
circle, square, etc.).  The Single-Pair Scatter is used to plot points on
scatter plots when there is only one X-Y pair of variables.  If there is more
than one X-Y pair, Statistix uses different symbols to mark the different X-
Y pairs.  You can select the symbols you want for the first two X-Y pairs in
multi-pair scatter plots.  Statistix will select the remaining symbols for plots
with more than two pairs.

Select the symbol you want Statistix to use for sequence plots (time series
plots and control charts).  You can plot up to seven series on a single plot
using the Time Series Plot procedure.  You can select the symbols to mark
the points for the first two time series variables plotted.  Statistix will select
the symbols for the others when more than two variables are used.

Select your preference for the Bar Fill Pattern.  It will be used to shade the
inside of the bars in histograms, error bar charts, and Pareto charts.

You can select the font name for text that appears on graphs.  Check the
Auto Scale Font Sizes box to have Statistix scale text to fit the graph. If you
want smaller or larger fonts, uncheck the box and enter specific values for
titles, axis titles, and axis labels.

There are also options to display grid lines, display the data set label at the
top of graphs, print in color, and save graphs in color.
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2

Data Menu

The Data Menu procedures are used to enter data and manipulate data
already entered into Statistix.  The Data menu is available whenever the
spreadsheet window is active.

The Insert procedures are used to add variables and cases to the active
spreadsheet.  Use it to create new data files.
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The Delete procedures are used to remove variables and cases from the
active spreadsheet.  Cases can be deleted by specifying a range of case
numbers, or all omitted cases can be deleted.

The Fill procedure is used to fill consecutive cells with a single value.

The Transformations procedure is used to modify the values of existing
variables and to create new variables using algebraic expressions and built-
in transformation functions.

The Recode procedure is used to change a list of values of an existing
variable to a single new value.

The Indicator Variables procedure is used to create variables that use the
values 0 and 1 to indicate the absence and presence of a factor. 

The Stack operation stacks several variables end-to-end to create a single
long variable.  The Unstack operation unstacks one variable into several
shorter ones.  

The Transpose operation transposes a table of data reversing the roles of
variables and cases.

The Omit/Select/Restore Cases procedure lets you “hide” or “omit”
specified cases from the program.  These rows are ignored by Statistix,
although they can be restored at will.  If a case is not omitted, we say that
the case is selected.  The omit status of a case refers to whether it is omitted
or selected.  

The Sort Cases procedure is used to sort the cases of a data set based on the
values of one or more variables.  

The Reorder Variables procedure is used to reorder the variables as they
appear on the spreadsheet left to right.

The Column Formats procedure is used to control the column widths and
numerical formats used to display each variable. 

The Labels procedures are used to enter a data set label, variable labels, and
value labels.  These labels appear on reports.
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Spreadsheet

Window

The current Statistix data set is displayed in the spreadsheet window.  The
file name appears in the window’s title bar.  The word “Untitled” appears in
the title bar for a new data set that hasn’t been saved yet.  The variable
names appear along the top of the spreadsheet window, and the case
numbers appear along the left margin.  Both selected and omitted cases
appear on the spreadsheet.  The case numbers of omitted cases are dimmed
to remind you that the cases are omitted.  The values of omitted cases can
be changed.

When the spreadsheet window is the active Statistix window, you can enter
data in the cells, scroll through the data using the scroll bars, and
manipulate the data using the Data procedures described in this chapter. 
You can make the spreadsheet window the active window by clicking
anywhere on the window using your mouse if part of the window is visible,
or by selecting it from the Window menu on the main menu bar.

The cell at the current position in the spreadsheet is highlighted.  The value
at the current position can be changed simply by entering a new value and
pressing Enter.  Enter the letter M for missing values for integer, real, and
date variables.  To partially change the value of a cell without retyping the
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entire entry, first highlight the cell, then press F2 or click on the string in
the highlighted cell.  Press Esc to undo the changes to the current cell.

You can move the current position around the spreadsheet using the arrow
keys, page up, and page down keys.  You can move the current position to a
different cell by clicking on that cell with your mouse.

The spreadsheet window can be manipulated in the same manner as other
windows.  It has the minimize, maximize/restore, and close buttons in the
upper right corner of the window.  You can resize the spreadsheet window
by dragging a corner of the window with your mouse.  You can move the
spreadsheet window by dragging the title bar with your mouse.

Variable Data

Types

Statistix can handle four types of data: real, integer, date, and string.  A
variable can only contain values of one data type.  

The “real” data type is used to represent floating point numbers in Statistix. 
This format is the most flexible offered by Statistix and is used as the
default data type when creating new variables.

Integer data in Statistix are whole numbers in the range -32767 to 32767. 
This data type uses only 25% as much space as the real data type.  You use
the integer data type instead of the real data type, when appropriate, to
increase the data set capacity of Statistix.  This also saves disk space by
reducing the size of Statistix data files.

The “date” data type is used to represent dates.  The “string” data type is
used to enter alphanumeric data, such as a subject’s name.  String variables
can be used as grouping variables for statistical procedures that compute
results by group.

When typing numbers using Statistix, you can enter a number in either
decimal format (e.g., 2.45) or exponential format (e.g., 1.23E+05).  Enter
the letter M to indicate a missing value for integer, real, and date variables,
but not for string variables.  A blank string is the missing value equivalent
for string variables.

A variable’s data type is established when you create it. Variables can be
created using several of the Data procedures discussed in this chapter
including Insert Variables and Transformations. Variables are also
created using the Import procedure discussed in Chapter 3.  You indicate
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the data type of a new variable by typing the letter I, R, D, or S in
parentheses after the variable name for integer, real, date, or string. String
types require a number after the letter S to indicate the maximum length.
For example, FirstName(s12) creates a string variable named FirstName
with maximum length 12.

Edit Menu In addition to the data management procedures listed on the Data menu, you
can manipulate the spreadsheet data using the Cut, Copy, and Paste
commands on the Edit menu.  The Cut and Copy commands copy selected
spreadsheet cells to the Windows clipboard, and the Paste command
retrieves information from the clipboard.  You can use these commands to
move a block of cells from one place on the spreadsheet to another, or to
export the block to another Windows application.  You can also import data
from other programs via the clipboard using the Paste command.

Before you can use the Cut and Copy commands, you have to select part of
the spreadsheet to cut or copy.  Use your mouse to select cases, variables, or
a rectangular block of cells.  To select a single case, click on the narrow
row-bar located just left of the case numbers.  The whole case is
highlighted to show that it’s selected.  You can select a range of cases by
clicking on the row-bar for the first case in the range, and dragging the
mouse to the last case in the range.  You can select noncontiguous cases,
hold the Ctrl key down and click on the row bar for the cases you want to
select.

To select a variable, click on the variable name at the top of the spreadsheet. 
To select a range of variables, click on the first variable name, then drag the
mouse to the last variable name in the  range.  To can select noncontiguous
variables, hold the Ctrl key down and click on the variable names you want
to select.

To select a single cell, click on that cell.  To select a range of cells, click on
one corner of the rectangle, then drag the mouse to the opposite corner of
the rectangle.  NOTE: To begin selecting a range of cells, you must point
your mouse to the extreme left side of the starting cell.  The mouse cursor
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will change direction, then press and hold the mouse button and begin
dragging.  The cells are highlighted as you drag the mouse so it’s easy to
see what you’ve selected.

Once you’ve selected cases, variables, or cells, use the Cut or Copy
command to copy the selected data to the clipboard.  The Cut command
copies the selected cells to the clipboard, and then deletes them from the
spreadsheet.  The Copy command copies the selected cells to the clipboard
without deleting them.  The information remains on the clipboard until you
next use the Cut or Copy command in Statistix or another Windows
program.  Press Del deletes the selected cases, variable, or cells without
first copying the information to the clipboard.

Information on the clipboard, whether it was copied there from Statistix or a
different program, can be pasted anywhere in the Statistix spreadsheet.  To
paste information, first click on a cell to select the insertion point.  Then,
select the Paste command from the Edit menu.  The pasted data overwrites
the data of existing variables starting at the current position.  When pasting
data on the spreadsheet, keep in mind that the data must be consistent with
the data types of the target variables.

When you're pasting data into an empty Statistix spreadsheet, Statistix will
create new variables to hold the data. The first row of the clipboard data can
be used for variable names, but the names must conform to the rules of
Statistix variables names.  Names must start with a letter, consist of only
letters, digits, and the underscore character.  Variable names can include
data type information (e.g., lastname(s15)).  If the first row doesn't have
variable names, Statistix will generate names starting with V001.

Insert

When you select Insert from the Data menu, a pop-up menu with two
alternatives appears: Cases and Variables.  Select Variables to add
variables to a new or existing data set.  Select Cases to insert cases into an
existing data set.
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Insert Cases

First enter the case number where you want to insert the new cases.  Then
enter the number of new cases to insert.  Press OK.

New cases appear in the spreadsheet window as rows of M’s representing
missing values.  Enter your data by typing in the actual values over the M’s.

Insert

Variables

The existing variables, if any, are listed in the Variables list box for your
reference.  You list a variable name for each column of data you intend to
enter in the New Variable Names edit control.  Variable names must start
with a letter and can contain letters, digits, and the underscore character. 
Variable names can be up to nine characters long.

In Statistix, data can be integer, real, date, or string.  However, a particular
column can only be used to store one type of data.  You can specify the data
type of variables when you list the variable names.  Use the letters I, R, D,
and S in parentheses after the variable names to identify integer, real, date,
and string types.  String types require a number after the letter S to indicate
the maximum length.  If you don’t specify a data type, real is assumed.
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In the dialog box on the preceding page, the variable STUDENT is a string
variable with a maximum length of 15 characters and the variable GRADE
is a string variable with length 1.  No data type is specified for the variables
EXAM1, EXAM2, and EXAM3, so they are assigned the real data type.  

The variable list EXAM1, EXAM2, and EXAM3 was abbreviated using
what we call VAR01 .. VAR99 syntax.  A data type entered at the end of
the list is applied to all of the variables in the list (e.g., Q1 .. Q15(I)).

After listing the variable names, press OK to begin data entry.  For a new
data set, an empty spreadsheet will appear, as in the following example.

To enter data, simply enter values for each cell and press Enter.  Pressing
Enter or Tab advances the cursor toward the right.  Press Shift-Tab to move
to the left.  Press the up arrow to move up and the down arrow to move
down.  Enter the letter M for missing values in integer, real, and date
variables, but not for string variables.

You can use the arrow keys to go back and correct errors anytime.  Simply
type in a new value over the existing value in a cell.  Press F2 to edit the
string at the current cell.  You can also move to a different cell by clicking
the mouse on that cell.
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Delete

Select Delete from the Data menu to delete cases or variables.  You will be
presented with a pop-up menu giving you four choices: Cases, Omitted
Cases, Selected Cell, and Variables.

Delete Cases Use the delete cases command to delete one case or to delete a contiguous
block of cases.  

Enter the first and last case numbers of the range of cases you want to
delete, then press the OK button.

An easier way to delete cases is to highlight one or more cases using your
mouse, and then pressing the Delete key.  To select a single case, click on
the narrow row-bar located just left of the case numbers.  The whole case is
highlighted to show that it’s selected.  You can select a range of cases by
clicking on the row-bar for the first case in the range, and dragging the
mouse to the last case in the range.  You can select noncontiguous cases,
hold the Ctrl key down and click on the row-bar for the cases you want to
select.

Delete

Omitted

Cases

You can also delete all omitted cases.  This method of deleting cases gives
you greater flexibility in selecting which cases to delete.  The
Omit/Select/Restore Cases procedure discussed later in this chapter can be
used to omit cases based on data values rather than case numbers.
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Delete

Selected Cells

This procedure lets to delete an arbitrary rectangle of cells, and optionally
shift the remaining cells up or to the right to fill the void.  First highlight the
cells you want to delete.  To select a single cell, click on that cell.  To select
a range of cells, click on one corner of the rectangle, then drag the mouse to
the opposite corner of the rectangle.  NOTE: To begin selecting a range of
cells, you must point your mouse to the extreme left side of the starting cell. 
The mouse cursor will change direction, then press and hold the mouse
button and begin dragging.  The cells are highlighted as you drag the mouse
so it’s easy to see what you’ve selected.

Once you’ve highlighted a range or cells, select Delete Selected Cells from
the Data menu (or press the Delete key), and the dialog box shown below
appears.

Select one of the Shift Cells radio buttons.  Select Shift Cells Left to have
data to the right of the deleted rectangle shifted left.  Select Shift Cell Up to
have data below the deleted rectangle shifted up.  Select Don’t Shift Cells
to fill the deleted cells with missing values.

Delete

Variables

Move the variables you want to delete from the Variables list box on the
left to the Delete Variables list box on the right.  First highlight one or more
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variables in the Variables box, then press the right-arrow button to move
them.  You can move a single variable by double-clicking on the name with
your mouse.  Press the OK button to delete the variables in the Delete
Variables box.

An alternative method of deleting variables is to highlight one or more
variables using your mouse, and then pressing the Delete key.  To select a
variable, click on the variable name at the top of the spreadsheet.  To select
a range of variables, click on the first variable name, then drag the mouse to
the last variable name in the  range.  To can select noncontiguous variables,
hold the Ctrl key down and click on the variable names you want to select.

Fill

The Fill command is used to fill a number of contiguous cells with a
particular value.  

Cells will be filled starting at the current position.  First select the direction
in which you want the filling to proceed from the Fill Direction radio
buttons, either down or right.  Enter the number of cells you want to fill in
the Number of Cells edit control.  Enter the value you want to us to fill the
cells in the Fill Value edit control.  If you select Down for the fill direction,
new cases will be added to the bottom of the spreadsheet if necessary.  If
you select Right, then filling will automatically wrap around when the end
of a case is reached and will continue on the next row.
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Transformations

This powerful procedure is used to create new variables or to alter the
values of the existing ones.  It has two general forms:  simple assignment
and conditional assignment using the If-Then-Else construct.

If you’re not familiar with arithmetic and logical expressions, you should
read the Arithmetic and Logical Expressions section at the end of this
chapter.

Specification

The Transformations Expression edit control in the center of the dialog
box is where you build your transformation.  The data set variables are
listed in the Variables list box on the left.  The Statistix built-in functions
are listed in the Function list box on the right.  Below the Transformation
Expression box is an area where error messages are displayed.  The error
message “Unknown variable or function TUNC” in the example is reporting
that the built-in function Trunc has been misspelled. 

The transformation expression must be typed in manually.  You can,
however, select variables from the Variables box and built-in functions
from the Functions box and insert them into the Transformation Expression
edit control at the cursor’s current position.  You can move the cursor in the
edit control using the arrow keys or the mouse.  To copy a variable name or
function, highlight the variable or function name with your mouse, then
press the corresponding arrow button.
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You’re only allowed to enter a single transformation in the Transformation
Expression edit control.  The control has several lines so that you can enter
a long expression. 

Once you’ve entered an expression, press the Go button.  If Statistix finds
an error in your expression, an error message is displayed below the
Transformation Expression box.  Edit your expression to correct the error
and press Go again.  Press the Clear button to erase the contents of the
Transformation edit control.

Clicking on the down-arrow to the right of the Transformations Expression
edit control displays a drop-down list of previously entered expressions.
Selecting an expression from the list copies it to the main expression box.

Simple

Assignment

Suppose the variable NEWVAR is a new one you want to create or an
existing one that you want to alter.  Such a variable is called a target
variable.  In a simple assignment, a target variable is simply equated with
an arithmetic expression:

  {target variable} = {arithmetical expression}

To give a specific example, suppose you want NEWVAR to be the sum of
the variables A, B, and C.  

  NEWVAR = A + B + C

A new variable called NEWVAR has now been created with the sum of the
variables A, B, and C.  If a variable called NEWVAR already exists, the
variable’s values will be replaced by the sum A + B + C.

A target variable’s name can appear on both sides of an assignment
statement provided the variable already exists. 

  TARGET = 2.75 + SQRT (TARGET)

Sqrt is an example of a built-in function that computes the square root of the
argument.  The built-in functions are described on page 54.

Statistix can handle four types of data: real, integer, date, and string.  Use
the letters I, R, D, and S in parentheses after the name of the new variable to
identify integer, real, date, and string types.  String types require a number
after the letter S to indicate the maximum length.  If you don’t specify a
data type, real is assumed.  The examples on the next page illustrate how
integer, date, and string variables can be created.
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  COUNT (I) = A + B + C
  DUEDATE (D) = SALEDATE + 30
  FULLNAME (S30) = FIRSTNAME + “ ” + LASTNAME

Date and string constants must be enclosed in quotation marks.  For
example:

  SALUTE (S20) = “Ms. ” + LASTNAME
  LENGTH = LASTDAY - “1/1/95”

Conditional

Assignment

On occasion you may want to apply one assignment to the target variable
when some condition is met and another assignment when the condition is
not met.  Conditional assignments employing the If-Then-Else construct are
designed for this purpose.  Its general form is:

  IF {logical expression}
  THEN {target variable} = {some arithmetic expression}
  ELSE {target variable} = {some other arithmetic expression}

If a specified logical expression for a particular case is true, the THEN
clause is performed; otherwise, the ELSE clause is performed.  This
construct is quite flexible, as the following examples illustrate.  

Suppose you want to create a new variable—AGEGROUP—based on the
values of a variable AGE.  You want AGEGROUP to be the tens digit of
age, but you want to group all ages of 60 or greater into one group.

  IF AGE < 60
  THEN AGEGROUP = TRUNC (AGE/10)
  ELSE AGEGROUP = 6

The three key words—IF, THEN, and ELSE—need not be on separate lines. 
A short statement can be written on one line.  The ELSE expression can be
omitted from a conditional transformation, in which case the target variable
is left unchanged when the logical expression is not true.  

  IF AGEGROUP > 6 THEN AGEGROUP = 6

The logical expression can include any valid arithmetic expressions, and the 
arithmetic expressions can include the target variable if it already exists.

  IF (A + B) <= (1.25 ( SIN (C))
  THEN A = 0.0 
  ELSE A = A + D + E

Converting

Variable Types

All of the values of a particular variable must be of the same data type,
either integer, real, date, or string.  The data type of an existing variable can
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be changed using a transformation.  For example, suppose that the variable
CONC was originally created as a real variable and contains values for
cholesterol concentration.  You can convert the variable CONC to an
integer variable using the transformation:

  CONC (I) = CONC

If a value for CONC exceeded the limits for an integer variable (-32767 to
32767), the result would be missing.  An integer variable can just as easily
be converted to a real variable:

  HEIGHT (R) = HEIGHT

Sometimes you end up with string variables that contain numbers or dates. 
Since Statistix can’t do arithmetic using string variables, it’s best to convert
string variables of these types using the special string conversion functions
Date and Number.  

  BIRTHDATE (D) = DATE (BIRTHDATE)
  LEVEL (R) = NUMBER (LEVEL)

The maximum length of a string variable can be changed using a transfor-
mation.  Suppose you had created a variable NAME (S15) but later decided
that 15 characters were insufficient.  You could increase the maximum
length using the transformation:

  NAME (S20) = NAME

Missing Values If a number used in an arithmetic expression is missing, the result of the
expression is also missing.  After all, you can’t perform arithmetic on
numbers that don’t exist.  Consider the transformation:

  A = B + C

If the value for the variable C is missing for a particular case, the expression
B + C is missing and the target variable A is assigned the missing value.

In the logical expression of a conditional transformation, it makes sense to
make tests of equality using missing values.  The expressions IF X = Y and
X <> Y are evaluated normally if either X or Y is missing.  However, a
number can’t be less than or greater than a missing value.  So when X or Y
is missing in an expression like IF X < Y, the logical expression can’t be
evaluated and the target variable is assigned a missing value.

The treatment of missing values is discussed at greater length in the
Arithmetic and Logical Expressions section on page 49.
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Omitted

Cases

Cases omitted using Omit/Select/Restore Cases are ignored when a
transformation is performed.  If the target variable is a variable that already
exists, omitted cases retain their old values, i.e., they are not transformed.  If
the target variable doesn’t already exist, omitted cases are assigned the
missing value when the transformation is performed.

Recode

The Recode procedure is used to replace (or “recode”) a list of values of a
variable with a new value. It’s most useful when you want reduce the
number of values a variable has by replacing them with new values that
identify groups of the original values.

First select the variable you want to recode from the Variables list and copy
it to the Source Variable box.  Next, identify the Destination Variable. You
can select an existing variable, or enter the name of a new variable.  The
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source and destination variables can have any data type (integer, real, date
or string) and they needn’t have the same type.

Finally, enter lists of values of the source variable in the column of boxes
titled Old Values, and a corresponding new value for the destination
variable in the column of boxes titled New Values.  When entering a list
into an Old Values box, separate values with commas or spaces. You can
specify a range of values using a dash (-) or colon (:). Use the plus sign to
indicate an open ended range of values.  When listing the values of a string
variable, long strings, or strings that contain spaces or commas must be
enclosed in quotation marks (e.g., “George Washington”, “Abe Lincoln”).

Indicator Variables

An indicator variable (also called a dummy variable) uses the values 0 and
1 to indicate the absence or presence of a factor or condition.  This
procedure creates indicator variables based on the values of an existing
variable.

For example, suppose you have a categorical variable named DOSE that
contains the values 5, 10, and 15, and you want to create three indicator
variables named LOW, MED, and HIGH.  In the dialog box above, the
variable DOSE was moved from the Variables list box to the Source
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Variable box.  The three values 5, 10, and 15 were then entered into the
Value List edit control.  The names of the three new variables LOW, MED,
and HIGH were then entered into the Indicator Variables edit control.

For cases where DOSE has the value 5, the new variable LOW will be
given the value 1; otherwise, the value would be 0.  For cases where DOSE
has the value 10, the new variable MED will be given the value 1;
otherwise, the value would be 0.  For cases where DOSE has the value 15,
the new variable HIGH will be given the value 1; otherwise, the value
would be 0.  

The source variable containing the existing levels can be an integer, real,
date, or string variable.  The levels listed for an integer or a real variable
must be nonnegative whole numbers.  String values in the list of levels must
be enclosed in quotation marks.

The list of levels can be omitted if the levels are consecutive numbers
starting with 1.  For example, if DOSE had contained the levels 1, 2, and 3,
the Value List could have been left empty.

Stack

The Stack procedure is used to stack several variables end-to-end to create
a single long variable.

Data to be analyzed can often be broken down into groups of interest.  For
example, you may be interested in cholesterol concentration by age group,
or fat absorption of doughnuts by the type of fat used in cooking.  There are
two ways data of this type can be presented.  One method is to store the data
for each group in its own variable.  A second method is to put all the data
into one variable, and use a second categorical variable to identify the
groups.  You can use the Stack procedure to transform data stored in the
first format to data stored in the second format. 

An example of the Stack dialog box appears on the next page.  First, move
the names of the variables you want to stack together from the Variables list
box to the Source Variables list box.  Then, enter the name of a new or
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QUICK  STANDARD      CONC    METHOD

   23        25        23         1

   18        24        18         1

   22        25        22         1

   28        26        28         1

   17         M        17         1

   25         M        25         1

   19         M        19         1

   16         M        16         1

    M         M        25         2

    M         M        24         2

    M         M        25         2

    M         M        26         2

existing variable to capture the stacked data in the Destination Variable
box.  

You can also specify a Class Variable.  The class variable is assigned a
number for each source variable, starting with number 1 for the first source
variable.  You can use it to tell from which source variable each item of
data in the destination variable originated.

In the example dialog box above, the variables QUICK and STANDARD
are selected as the source variables.  A new variable CONC has been
entered as the destination variable.  The new variable METHOD has been
entered as the class variable and will capture the group numbers 1 and 2 for
the source variables QUICK and STANDARD, respectively.  The resulting
data set, which contains both the original variables and the new variables, is
presented below. 
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Unstack

The Unstack procedure is used to break one long variable into two or more
shorter variables.  The data in the original variable is divided up between
the new variables based on the values of a class variable.

The Unstack procedure is the reverse of the Stack procedure discussed on
the preceding page.  We’ll illustrate the Unstack procedure using the same
data presented above. 

Suppose you start with the variables CONC and METHOD, and you want to
make the two variables QUICK and STANDARD.  You’d use the Unstack
procedure to do this, as illustrated in the dialog box above.  Both the Source
Variable and the Class Variable are required.  The class variable can be any
data type (integer, real, date, or string).  There can be no more than 500
groups.  List the Destination Variables.  You can use VAR1 .. VAR99
syntax to abbreviate the list.  If there are n values for the class variable, you
must enter exactly n variables in the list.

Transpose

Most Statistix procedures operate on columns of data.  You may on
occasion want to obtain statistics for rows of data.  The transpose operation
is used to copy data from rows of selected variables to a new set of
variables, thus reversing the role of cases and variables.  

38 Statistix User's Manual



CASE         A         B         C

   1         1         2         3

   2         4         5         6

   3         7         8         9

   4        10        11        12

CASE         A         B         C         D         E         F         G

   1         1         2         3         1         4         7        10

   2         4         5         6         2         5         8        11

   3         7         8         9         3         6         9        12

   4        10        11        12         M         M         M         M

This is best explained using an example.  Suppose we have three variables
A, B, and C with four cases of data:

To transpose this table of data, we specify the variables A, B, and C as the
Source Variables.  Since there are four cases, we need four Destination
Variables.  We list the new variables D, E, F, and G, as illustrated in the
dialog box below.

The results are shown below.

Note how the values 1, 2, and 3, reading left to right for variables A, B, and
C now appear reading from top to bottom for variable D.
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Omit/Select/Restore Cases

If you want to analyze a select subset of the cases in Statistix, the Omit/
Select/Restore Cases procedure lets you temporarily “hide” some of your
data from the program.  Once cases are omitted, they are ignored by the
statistical procedures until they are “restored”.  Omitted cases can also be
selectively restored using a “select” statement.  The omit status of cases are
saved when you use the Save procedure.

You specify the cases you want to omit using logical expressions.  If you’re
not familiar with logical expressions, please refer to the Arithmetic and
Logical Expressions section on page 49.

The Omit/Select/Restore Expression edit control in the center of the dialog
box is where you build your omit statement.  The data set variables are
listed in the Variables list box on the left.  The Statistix built-in functions
are listed in the Function list box on the right.  

The omit expression must be typed in manually.  You can, however, select
variables from the Variables box and built-in functions from the Functions
box and insert them into the Omit/Select/Restore Expression edit control at
the cursor’s current position.  You can move the cursor in the edit control
using the arrow keys or the mouse.  To copy a variable name or function,
highlight the variable or function name with your mouse, then press the
corresponding arrow button.
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You’re only allowed to enter a single omit statement in the Omit Expression
edit control.  The control has several lines so you can enter a long
expression. 

Once you’ve entered an expression, press the Go button.  If Statistix finds
an error in your expression, an error message is displayed below the Omit
Expression box.  Edit your expression to correct the error and press Go
again.  Press the Clear button to erase the contents of the Omit Expression
edit control.

Clicking on the down-arrow to the right of the Omit Expression edit control
displays a drop-down list of previously entered expressions. Selecting an
expression from the list copies it to the main expression box.

You can enter three types of statements: “omit”, “select”, and “restore”. 
The omit statement has the general form OMIT {logical expression}.
Likewise, the select statement has the form SELECT {logical expression}. 
The restore statement is simply the word RESTORE, which instructs
Statistix to restore the omit status of all cases to be selected.

The omit status of a case can be either selected or omitted.  When a data set
is created, all cases are selected.  You can use the omit statement to
selectively omit cases that currently have the status selected; the omit state-
ment doesn’t change the status of cases already omitted.  Use the select
statement to change the status of omitted cases back to selected; the select
statement doesn’t change the status of already selected cases.

Once you’ve entered and successfully executed an omit expression, a
message box reports the number of cases omitted or selected.  The number
of cases currently selected is displayed on the status bar that appears at the
bottom of the Statistix window.

The successful omit or select expression remains in the Omit Expression
edit control and can be edited to create a new omit expression.  To delete a
previous expression from the edit control, press the Clear button. 

The effects of sequential omit expressions are cumulative; a second omit
expression will only act upon the cases not omitted by the first expression. 
Thus, the two expressions “OMIT AGE < 10” and “SEX <> ‘F’” entered
one after the other have the same effect as the single expression 
“OMIT AGE < 10 OR SEX <> ‘F’”.
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The omit expression can be as complex as you like and can span all of the
lines in the edit control.  You can press Enter while typing an omit
expression to advance to the next line.

A useful tip for using the omit command takes advantage of the fact that the
arithmetic involving missing values always results in a missing value. 
Thus, the omit expression

  OMIT AGE + HEIGHT + SEX + WEIGHT = M

will omit a case if any of the variables have a missing value for the case and
is easier to type than the alternative:

  OMIT AGE = M OR HEIGHT = M OR SEX = M OR WEIGHT = M

Please see the Arithmetic and Logical Expressions section on page 49 for
more information about logical expressions.  The built-in functions are
defined on page 54.

Sort Cases

Statistix offers a Sort Cases procedure to sort the cases of a data set into
ascending or descending order based on the values of selected key variables. 
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Highlight the variables you want to use as the key variables in the Variables
list box and press the right-arrow button to move them to the Key Variables
box.  The order in which the variables appear in the Key Variables list box
is important.  The cases will be sorted by the first variable first, then by the
second variable within the first, and so on.

Any type of variable (integer, real, date, or string) can be used as a key
variable.  Sorting using string keys is not sensitive to upper and lowercase
letters (e.g., the keys “Iowa” and “IOWA” will be treated the same).

In most applications, you’ll want the cases kept intact so that the values for
the non-key variables are moved to their new positions along with the key
variable values.  Occasionally, you’ll want to sort the values of a variable
without disturbing the order of some or all of the remaining variables.  In
such cases, move the variables you want excluded to the Exclude Variables
list box.

You can have your data sorted into ascending or descending order.  Indicate
your preference by selecting one of the Sort Order radio buttons. 

Omitted cases are sorted along with selected cases.  The omit status of a
case moves with the key variables.
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Rename Variables

Use this procedure to rename variables in your open data file.

Simply type in new variable names in the New Names box next to the old
names of the variables you want to rename.  Leave the space blank for
variables you don’t want to rename.

Reorder Variables

The Reorder Variables procedure is used to change the order in which the
variables are displayed in the spreadsheet window.  If you’ve selected
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spreadsheet order rather than alphabetical order using the Preferences
procedure (see Chapter 1), it will also change the order that variables are
listed in the Variables list boxes that appear in dialog boxes.

The variables in the Variables list box are listed in the order they currently
appear in the spreadsheet.  You move the variables to the New Variable
Order list box in the order you want them to appear in the spreadsheet. 
First highlight one or more variables in the Variables box, then press the
right-arrow button to move them.  You can move a single variable by
double-clicking on the name with your mouse.  Press the OK button to
reorder the variables.

Column Formats

This procedure allows you to control the column width of data stored in
variables, and the numerical format of real variables.  The widths and
formats you choose affect both the appearance of the columns in the
spreadsheet window and columns displayed in the Print report (see Print in
Chapter 3).

First, highlight one or more variable names in the Variables list box.  The
data type of the first variable you highlight appears on the dialog box.  Only
variables with the selected data type will be changed.  In the example, the
highlighted variable LOTSIZE is a real variable.
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For string, date, and integer variables, you can only change the column
width (number of characters).  For real variables, choose a format by
selecting one of the four Numeric Format radio buttons, then enter values
for Width and Decimal Places (Significant Digits for decimal and
exponential formats).  Be sure to enter a width large enough to account for
the decimal point and the minus sign for negative numbers.  Press the OK
button to save your changes.

You can apply a single column format to more than one variable at a time. 
To do so, highlight one of the variables you want to format; the current
column format values for that variable appear in the dialog.  Next, highlight
additional variables you want to format.  You can do this by clicking on the
variable names while holding down the control key.  You can also select a
range of contiguous variables by clicking on the first variable in the range
and dragging the pointer to the last variable in the range while holding the
mouse button down.  

The Automatic format displays numbers using an integer format for whole
numbers, or a decimal format when the number contains a fraction.  For
numbers with a fraction, as many digits as possible will be displayed, but
trailing zeros are trimmed.  The automatic format works well for data
you’ve entered manually because the numbers generally are displayed just
as you’ve entered them.  For computed variables, such as variables created
using the Transformations procedure, the automatic format often displays
nonsignificant digits.

The Fixed format displays numbers in a decimal format with a fixed
number of decimal places.

The Decimal format displays numbers using a decimal format where the
decimal pont is free to move to maximize the number of digits displayed. 
You specify the number of Significant Digits.

The Exponential format displays numbers using scientific notation.  A
number displayed in exponential format has two parts, the mantissa and the
exponent.  The mantissa is a number displayed as a decimal number that’s
always greater than or equal to 1.0 and less than 10.0.  The exponent is
displayed using the letter E followed by a signed integer.  The number
represented in this fashion is the mantissa multiplied by 10 raised to the
exponent.  For example, the number 4.23E-02 is equal to 4.23 × 10 , or-2

0.0423.  You specify the number of Significant Digits, which is the number
of digits in the mantissa.
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Labels

The Labels procedure is used to enter or change the current values of three
kinds of labels: the data set label, variable labels, and value labels.  These
labels are used to annotate Statistix reports and graphs.  After selecting
Labels from the Data menu, you’re presented with a pop-up menu with the
three selections: Data Set, Variable, and Value.

The File Info report on the File menu (see Chapter 3) displays all of the
labels for the open file.

Data Set Label The Data Set Label is a one line heading used to describe the data set.  It’s
printed at the beginning of each Statistix report.

Variable

Labels

Variable labels are descriptive comments for variables.  Variable labels
will remind you what data the variables contain and how they were created. 
Variable labels are incorporated into the heading of some reports, such as
the stem and leaf plot.  They are also used for axis labels for graphs (e.g.,
scatter plots and histograms). 
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The variables and variable labels are presented in a table as shown in the
example on the preceding page.  Type in your variable labels beside the
corresponding variable names.  Variable labels can be up to 40 characters
long.

Value Labels Value labels are descriptive strings attached to individual values for a
variable.  For example, coding states using numbers may be convenient for
data entry purposes, (1 for Iowa and 2 for Nebraska in the example dialog
below.)  Value labels serve as comments to remind you what the codes
represent.  These labels also appear in Statistix reports (e.g., cross
tabulations) to improve readability.  

First, highlight the variable of interest and move it to the Source Variable
box.  The current value labels of the selected variable, if any, are displayed
in the Value Labels list box.  If you want to use the same labels for other
variables, move the variables to the Copy To Vars list box.

To define a label, enter a number in the Value edit control, and a string in
the Label edit control, then press the right-arrow button to add the value-
label pair to the Value Labels list.  Value labels can be up to ten characters
long.

To delete a defined label, highlight the value-label pair in the Value Labels
box, then press the left-arrow button.  The value and label appear in the
Define Label edit controls so you have the opportunity to edit the label and
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add it back to the list.

When you’ve finished defining value labels for the source variable, press
the Save button to save the labels.  Then select another source variable, or
press the Close button to exit.

You can copy the labels already defined for one variable to one or more
other variables.  First, move the variable that has labels defined to the
Source Variable box.  The variable’s labels are displayed in the Value
Labels box.  Then, move the unlabeled variables to the Copy To Vars list
box.  Then press the Save button.

Arithmetic and Logical Expressions

The data management procedures Transformations and Omit/Select/
Restore are powerful data manipulation tools.  To appreciate the full
potential of Statistix, you must understand the principles of arithmetic and
logical expressions discussed in this section.  This material will be familiar
to people who are experienced in either database management software or
programming languages.

Arithmetic

Expressions

The following arithmetic operators are available:

^ Exponentiation.  For example, A ^ B is A raised to the B-th power.  

( Multiplication.  A ( B is the product of A and B.

/ Division.  A / B is A divided by B.  

+ Addition.  A + B is the sum of A and B.  

- Subtraction or reversal of sign.  A - B is B subtracted from A.  The
expression -A, unary negation, reverses the sign of A.

These operators are used to form arithmetic expressions with constants,
variable names, and built-in functions.  A constant is simply a number, such
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as 1.96 or 3.1416.  String and date constants must be enclosed in quotation
marks (e.g., “Great Scott”, “10/12/55”).  Built-in functions are described in
more detail on page 54.

An example of an arithmetic expression is A + 2.75 ( B, where A and B are
variable names and 2.75 is a constant.  Statistix evaluates this expression for
each case by first taking the product of the constant 2.75 and the variable B. 
The value of variable A is then added to get the final result.  

The order in which operators in an expression are evaluated is determined
by some simple rules of precedence.  The rules of precedence Statistix uses
to evaluate arithmetic expressions are the same as those used in algebra.  If
all of the arithmetic operators in an expression are of equal precedence, they
are evaluated in order from left to right.  However, not all operators share
equal precedence.  The following table ranks the arithmetic operators
according to precedence.

Highest Precedence: - (unary negation)
^
(,  /

Lowest Precedence:+,  -

Unary negation has the highest precedence and is always performed first if
it occurs anywhere in an expression.  Exponentiation (^) is performed next,
followed by multiplication (() and division (/).  Multiplication and division
are of equal precedence, so the order in which they appear in the expression
determines which is done first.  Addition (+) and subtraction (-) share the
lowest precedence among arithmetic operators.

Any expression within parentheses is evaluated before expressions outside
the parentheses.  For example, in the expression (A + 2.75) ( B, the sum A
+ 2.75 is evaluated first and the result is then multiplied by B.  Parenthetical
expressions can be nested, with the innermost ones being evaluated first. 
An example is (A + B ( (C + D)) ( E.

The simplest arithmetic expression is just a constant or variable by itself, 
in which case no arithmetic operators are involved.

Date and

String

Arithmetic

Some arithmetic can be performed on dates and strings.  A date can be
subtracted from another date to compute the number of days between two
events.  For example, AGE = (“05/23/92” - BIRTH) / 365.  You can also
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add a constant to a date.  Multiplication and division of dates aren’t
allowed.

Addition can be performed using string variables and constants.  For
example, the expression FIRST + “ ” + LAST concatenates the strings in
the variables FIRST and LAST with a space in between.

Logical

(Boolean)

Expressions

When arithmetic expressions are evaluated, they return numerical values by
case.  On the other hand, logical expressions return the boolean values
TRUE or FALSE by case.  You, as a Statistix user, will never actually see
the values TRUE and FALSE.  What you will see are the consequences of
some action that was based on whether the expression was TRUE or
FALSE, for example, whether a case becomes omitted or not (see
Omit/Select/Restore Cases for details).

We now introduce two new classes of operators—relational operators and
logical operators.  These operators are used to construct logical expressions,
expressions that take the boolean values TRUE or FALSE when evaluated. 
The relational operators are: 

= equal to <> not equal to
< less than <= less than or equal to
> greater than >= greater than or equal to

The logical operators are NOT, AND, and OR.

Relational operators require arithmetic expressions for arguments—one to
the left and one to the right of the operator (remember that the simplest
arithmetic expression is just a constant or a variable name).  Relational
operators return the boolean values TRUE or FALSE when evaluated. 
Some typical examples of simple logical expressions using relational
operators are:

A + B > C
A = 999
A ^ 3.45 >= B / C

The embedded arithmetic expressions are evaluated before the relational
operators.  All relational operators have the same precedence.

The logical operators NOT, AND, and OR are used to construct more
complex logical expressions.  Logical operators require boolean arguments,
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or to put it another way, the arguments for logical operators must be logical
expressions.  (Note: This is why they are called logical operators; they
operate on logical expressions.)  The NOT operator requires only one
argument to the right; both AND and OR require two arguments, one on
either side.  The truth table below summarizes the action of these operators
(T stands for TRUE, and F for FALSE).

     ARGUMENT
      VALUES              VALUE RETURNED    
    X       Y       X AND Y   X OR Y   NOT X
    T       T          T         T       F
    T       F          F         T       F
    F       T          F         T       T
    F       F          F         F       T

In their most general form, logical expressions are built with relational and,
when needed, logical operators.  Some further examples of logical expres-
sions are:

  (A > B) AND (A = 1)

  NOT ((A + B) > C)

  ((A = B) AND (B = C)) OR ((A <> D) AND (A < 1.96))

There are often many ways to express the same condition.  Use the one that
is clearest to you, not necessarily the most “elegant”.  In such expressions,
embedded arithmetic operators are evaluated first, followed by relational
operators.  Logical operators have the lowest precedence of any operator. 
NOT takes precedence over AND and OR; AND is evaluated before OR. 
The order of evaluation is easy to control with the use of parentheses.  Be
careful to use enough parentheses to insure that things are evaluated in the
intended order.  The following table summarizes the precedence ordering of
Statistix operators and built-in functions.

Highest Precedence: parenthesized expressions
built-in functions
- (unary negation) 
^
(, /
+, -
=, >, <, >=, <=, <>
NOT
AND

Lowest Precedence:OR
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Machine

Precision and

Tests for

Equality

Computers do not perform decimal arithmetic exactly.  While the rounding
error that occurs during arithmetical operations is usually negligibly small,
there is one situation where it is extremely important: tests for exact
equality.  For example, suppose you want to perform the transformation
Y=9(X/9.  You might expect Y to equal X, but it may not because of very
small rounding errors.  Therefore, it’s not certain that the logical
comparison IF Y = X will return the value TRUE.  It’s safer to perform the
comparison using the expression IF Abs (X - Y) < d, where d is some small
number and Abs is the absolute value function.

Handling of

Missing Values

Missing values require special consideration when arithmetical or logical
expressions are evaluated.  In arithmetical expressions, if any of the
arguments have the value missing, the expression is automatically evaluated
as missing.  This is only reasonable—you can’t perform arithmetic on
numbers that don’t exist.

Logical expressions are somewhat trickier.  Different actions are taken
depending on the context in which the relational expression is used.  The
following truth table shows the rules used with missing values for
Omit/Select/Restore Cases.

     ARGUMENT
      VALUES               VALUE RETURNED           
    X       Y     X=Y   X<>Y  X>Y   X<Y   X>=Y  X<=Y
    M     NOT M    F     T     F     F     F     F
    M       M      T     F     F     F     F     F

The If-Then-Else construct has the same truth table for X = Y and X <> Y. 
However, it avoids the issue for the other inequalities by assigning the
target variable the value missing.

You may think it would make sense to always assign the target variable the
value missing.  After all, how do you decide if two unknown values are
equal?  The reason we use these rules is so you can manipulate the missing
values.  For example, perhaps you want to replace all of the missing values
with 0.0:

  IF X = M
  THEN X = 0
  ELSE X = X

You should be aware, however, that sometimes you may not be satisfied
with these rules.  Consider, for example:

  IF X = Y  THEN NEWVAR = 1 ELSE NEWVAR = 2
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If both X and Y are missing, Statistix will evaluate the ELSE expression and
assign 2 to NEWVAR.  You really want NEWVAR to be missing as well. 
This is easily done with a second transformation, as shown below.

  IF (X = M) OR (Y = M)
  THEN NEWVAR = M
  ELSE NEWVAR = NEWVAR

Remember that if the value for any variable in an arithmetic expression is
missing, the expression is evaluated as missing.  This can be exploited in a
variety of ways.  For example, suppose you have the variables A, B, C, D,
and Y, and you want Y to be missing whenever A, B, C, or D is missing. 
One way of doing this is:

  IF (A = M) OR (B = M) OR (C = M) OR (D = M)
  THEN Y = M
  ELSE Y = Y

But a more compact method is:

  IF A + B + C + D = M  THEN Y = M  ELSE Y = Y

Built-in

Functions

There are 66 built-in functions that can be included in arithmetic
expressions.  Most of them require arguments.  The arguments of most
functions can be any valid arithmetic expression.  This will be represented
as “x” in the following descriptions.  Note that x can include built-in
functions, including the function it is an argument for, such as Sqrt (Sqrt
(x)).  If x has the value missing when it is evaluated, the function is also
assigned as missing.  In a few cases, an integer constant is required for an
argument, such as CAT (5,1).  Integer constants are represented as “i” or “j”
in the following descriptions.  String constants or variables are represented
as “s”.  The row functions (e.g., Rowmean) require a variable list for an
argument and are represented as “v1..vn” below.  Functions Case, M, Pi,
Random, and Selcase do not require input arguments.  The available built-in
functions are listed in the table on the next page.

The function names appear in a list box when you are using the Trans-
formations or Omit/Select/Restore Cases procedures.  Functions can be
selected directly from the Functions list box and inserted into the
expression box.  You can also type in the function name into an expression,
in which case you can abbreviate the function name using enough of the
first characters to distinguish it from the other function names. 
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Abs(x)

Angle(x)

Arcsin(x)

Arctan(x)

Atkinson(x)

Capitalize(s)

Case

Cat(i,j)

Copy(s,i,j)

Cos(x)

Count(x)

CumSum(x[,k])

Date(s)

Day(x)

DayofWeek(x)

Delete(s,i,j)

Diff(x[,i])

Exp(x)

Factorial(i)

GeoMean(x)

Insert(s1,s2,i)

Lag(x[,i])

Length(s)

Ln(x)

Log(x)

LowCase(s)

M

Max(x)

Mean(x)

Median(x)

Min(x)

Modulo(i,j)

Month(x)

Normalize(x)

NRandom(m,sd)

Number(s)

Percentile(x)

Pi

Pos(s1,s2)

Power(x,y)

Random

Rank(x)

Round(x)

RowCount(v1..vn)

RowMax(v1..vn)

RowMean(v1..vn)

RowMedian(v1..vn)

RowMin(v1..vn)

RowSD(v1..vn)

RowTotal(v1..vn)

SD(x)

SelCase

Sin(x)

Sqr(x)

Sqrt(x)

String(x[,i])

Studentize(x)

Tan(x)

Total(x)

Trunc(x)

Unitize(x)

UpCase(s)

Variance(x)

Year(x)

ZInverse(x)

ZProb(x)

Most of the functions operate using one case at a time.  For example,
Sqrt(x) computes the square root of the expression x, case by case.  Some
functions compute a single value for an entire column x.  The Mean (x) is
an example of this type; it computes the mean of the column x.  Column
functions are normally used as part of a larger expression (e.g., x -
Mean(x)).  The nine column functions are Count, Geomean, Max, Mean,
Median, Min, SD, Total, and Variance.

Most of the functions expect numerical arguments and return numerical
results.  There are ten functions that require string arguments (Upcase,
Lowcase, Length, Pos, Copy, Delete, Insert, Capitalize, Date, and Number)
and four functions that require date arguments (Day, Month, Year, and
Dayofweek).

A description of each of the functions follows.

Abs (x) Absolute value of x.

Angle (x) Computes the angular transformation (also called the arcsin-square root
transformation) for proportions.  Proportions near 0 or 1 are spread out so as
to increase their variance (Snedecor and Cochran, 1980).  The argument x
must be a proportion between 0 and 1.  You can apply the function to a
percentage by first dividing the percentage by 100.

Arcsin (x) Arcsine of x in radians.

Arctan (x) Arctangent of x in radians.

Chapter 2, Data Menu 55



Atkinson (x) Computes the transformation for the Atkinson score method used to
determine what power transformation, if any, is needed in a linear
regression analysis (Weisberg, 1985).  The argument of the transformation
is the dependent variable in the regression analysis.  The transformed
variable is added as an independent variable in the regression analysis to
test for a power transformation (see Weisberg for an example).

Capitalize (s) Capitalizes the first letter of each word in the string s and converts all other
letters to lowercase.

Cat (i, j) Categorical index generator.  This function generates index values.  The
integer argument i gives the number of categories in the index, and the
integer argument j is the repeat factor.  This function generates the numbers
1 through i, repeating each value j times.  First j 1’s are generated, then j
2’s, etc., up to j i’s.  After i x j values are generated, the process repeats.

Both i and j must be specified as positive integers.

Some examples are shown below.  The example assumes that there are 12
cases in the data set, and all have been selected.

Y = CAT (3,2) Y : 1,1,2,2,3,3,1,1,2,2,3,3

Y = CAT (3,3) Y : 1,1,1,2,2,2,3,3,3,1,1,1

Y = CAT (4,3) Y : 1,1,1,2,2,2,3,3,3,4,4,4

Y = CAT (5,1) Y : 1,2,3,4,5,1,2,3,4,5,1,2

Y = CAT (2,4) Y : 1,1,1,1,2,2,2,2,1,1,1,1

Although this may initially appear to be a rather simple-minded function, it
is extremely useful for creating categorical variables needed for numerous
types of analyses.  For example, suppose you have data from a randomized
block design with 4 blocks and 3 treatments applied within each block. 
Then suppose your data are ordered such that the 3 observations for block 1
came first, followed by the 3 observations for block 2, etc.  To create your
block index, you would specify: BLOCK = CAT (4,3).  The treatment index
is created as: TREAT=CAT (3,1).

Note that if the data had been ordered such that the 4 values for treatment 1
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came first, followed by the 4 values for treatment 2, etc., the indices would
be generated as BLOCK = CAT (4, 1) and TREAT = CAT (3, 4).

Copy (s,i,j) Copies j characters of text from the string s starting at the i-th character.

Case Case index.  Case indicates the position of a value in the data set.  If the
data set is thought of as a rectangular table of numbers, the variable names
identify the columns and the case indices identify the rows.  Case is
incremented for cases that are omitted.  The Selcase function discussed on
page 60 skips omitted cases.

Cos (x) Cosine of x.  Units of x are assumed to be radians.  Angles can be converted
from degrees to radians as: RADIANS = DEGREES / 180 * PI.

Count (x) Number of usable cases of x.  This function returns the total number of
usable cases (i.e., selected and not missing).  It is not a running counter;
please see Case above for such a function.

Cumsum (x[,k]) This function is two functions in one.  When used with a single argument x,
it computes the running sum of x.  The value it returns for the i-th case is
the sum of the first i cases of x.  

When used with the two arguments x and k, it computes the decision

iinterval cusum.  The value returned for the i-th case S  is defined as

i i-1 iS  = max (0, S  + x  - k).  

Date (s) Converts the string value s to a date value.  This function is used to convert
string variables to date variables.

Day (x) Day of month.  The argument must be a date.

Dayofweek (x) Day of week (1 = Sunday, 2 = Monday, etc.).  The argument x must be a
date.

Delete (s,i,j) Deletes j characters of text from the string s starting at character index i.

Diff (x, i) Difference of x and x lagged by i cases.  The value of this function for the j-
th case is x at case j minus x at case j-I.  The argument i may be omitted, in
which case i = 1 is assumed.  See also Lag (x, i).

Factorial (x) Computes x!
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Exp (x) Exponentiation; e raised to the power x.

Geomean (x) Geometric mean of the column x.

Insert (s1,s2,i) Inserts the string s1 into the string s2 at character index i.

Lag (x, i) Lag x by i cases.  The value of this function for the j-th case is the (j - i)-th
case of x.  Cases 1 up to i receive the value missing.  Only selected cases
are treated.  If the (j - i)-th case of x is missing, Lag will return the value
missing for the j-th case.  The integer lag factor i is optional; it defaults to 1
if omitted.

Length (s) Computes the length (number of characters) in the string s.

Ln (x) Natural (base e) log of x.

Log (x) Base 10 log of x.  Use the Power function discussed on the next page to
compute antilogs (e.g., Power (10, x)).

Lowcase (s) Converts the string s to all lowercase.

M Missing value indicator.  This can be used to assign a variable a missing
value (e.g., VAR = M).  It can also be used to test a variable for missing
data (e.g., IF VAR = M).  

Max (x) Maximum value of x over all selected cases.

Mean (x) This function returns the mean of x over the selected cases.

Median (x) This function returns the value of the median for x over all selected cases.

Min (x) This function returns the minimum value of x over all selected cases.

Modulo (x, y) Computes the modulus of x by y (the remainder of x divided by y).  x and y
may be expressions but must have integer values less than 99,999. 
Example: Modulo (12, 5) = 2.

Month (x) The month of the year.  The argument x must be a date.

Normalize (x) Normalize scales x such that the sum of all values of x equals 1.
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NRandom (m,
sd)

Normal random number generator.  Generates a normal random number
with mean m and standard deviation sd.  See also Random.

Number (s) Converts the string value s to a number.  This function is used to convert
string variables containing numeric strings to real or integer variables.

Percentile (x) Percentile of x.  Suppose you have a variable SCORE that contains the test
scores for all students in a class.  The transformation PSCORE = Percentile
(SCORE) creates a new variable PSCORE that contains the percentiles of
each test score.

Pi The constant pi, 3.1415926.

Pos (s1, s2) Returns the starting position of the string s1 where it appears in the string
s2.  If the string s1 does not appear in the string s2, zero is returned. 
Example: Pos (“def”, “abcdefg”) = 4.

Power (x, y) Raises the value x to the power y.  Produces the same result as x ^ y.  This
function is defined for nonnegative values for x and for negative values for
x when y is a positive whole number.  

Rank (x) Ranks of x.  The value of this function for the I-th case of x is the rank of
that case.  If some cases are tied, these cases receive the appropriate average
rank.  

Random Generates a uniformly distributed random number on the interval 0.0 to 1.0. 
You change the scale of the random numbers produced by multiplying the
function result by a constant.  See also NRandom.

Round (x) Rounds x to the nearest whole integer number.  

Rowcount
(v1..vn)

Counts the number of nonmissing values in the variable list for each case. 
As with the other row functions described below, the variable list can
include VAR1 .. VAR99 syntax and the keyword ALL. 

Rowmax
(v1..vn)

The maximum value among the variables listed for each case.

Rowmean
(v1..vn)

The mean of the variables listed for each case.  The mean is computed
ignoring missing values.
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Rowmedian
(v1..vn)

The median of the variables listed for each case.  The median is computed
ignoring missing values.

Rowmin (v1..vn) The minimum value among the variables listed for each case.

RowSD (v1..vn) The standard deviation of the variables listed for each case.

Rowtotal
(v1..vn)

The sum of the variables listed for each case.  The total is computed
ignoring missing values.

SD (x) Standard deviation of x.  This function returns the sample standard
deviation for the column x.  This is the so-called unbiased estimate of the
standard deviation; the divisor is the square root of n - 1, where n is the
number of usable cases.

Selcase Selected case index.  Selcase indicates the position of a value in the data set
with respect to the selected cases.  If the data set is thought of as a
rectangular table of numbers, the variable names identify the columns and
the case indices identify the rows.  Selcase is not incremented for cases that
are omitted.  Selcase ranges from one to the maximum number of selected
cases.  Case counts all cases regardless of their omit status.

Sin (x) Sine of x.  Units of x are assumed to be radians.

Sqr (x) Squares the value of x.

Sqrt (x) Square root of x.

String (x[,i]) Converts a number or date to its string equivalent.  The optional constant i
specifies the number of decimal places when converting numbers.

Studentize (x) Studentizes x.  A variable is studentized by subtracting the sample mean
from the original values and dividing the deviations from the sample mean
by the sample standard deviation.  Once x has been studentized, it’ll have a
mean of zero and a standard deviation of one.  If x was originally normally
distributed, x will be nearly standard normally distributed after studentizing. 

Tan (x) Tangent of x.  Units of x are assumed to be radians.

Total (x) This function returns the sum of all selected cases for x.
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Trunc (x) Truncates the decimal portion of a number.  For example, 1.98 when
truncated becomes 1.0.

Unitize (x) Scales x so its vector norm equals one.  The norm, or length, of a vector is
the square root of the sum of the squares of the elements of the vector.

Upcase (s) Converts the string s to all uppercase.

Variance (x) This function returns the sample variance for x.  This is the so-called
unbiased estimate of the variance; the divisor is n - 1, where n is the number
of usable cases.

Year (x) Year of a date.  The argument x must be a date.

Zinverse (x) Inverse of the standard normal distribution.  If the value of the argument x is
between 0 and 1, Zinverse returns the inverse of the standard normal
distribution.  That is, the value returned is the z value (standard normal
value) for which the probability of a smaller value is the value of x.

Zprob (x) The standard normal probability of x.  This function returns the probability
of a value smaller than x from a standard normal distribution.  In other
words, this function returns the lower tail probability.
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C        H        A        P        T        E        R

3

File Menu

Statistix offers flexible and easy-to-use file management procedures.  These
procedures are used to manipulate data files stored on fixed disks, diskettes,
and CDs.  You’ll use the file management procedures to open and save data
files, import data created by other programs, and view text files without
leaving Statistix.

Data that you create using Statistix are temporary.  Data that you enter,
import, or create using transformations are not stored on disk until you
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explicitly create a disk file to permanently store your Statistix data.

The New procedure is used when you want to create a new Statistix data
file.  It closes the current data set and displays an empty spreadsheet.

The Save and Save As procedures are the usual methods of saving Statistix
data.  These procedures create a high speed compact binary file
representation of a Statistix data set.  Statistix data files have the file name
extension “.SX”.  

The Open procedure is used to retrieve Statistix data files created
previously using the Save and Save As procedures.

The Merge procedures combines data from your active data set and a
second data set stored in a Statistix data file.  There are three separate
procedures to merge (1) cases, (2) variables, and (3) labels, transformation
expressions, and dialog box settings.

The Summary File procedure is used to create a new Statistix data file
containing summary statistics of the active data set.  

The Log File procedure is used to start recording a log of the Statistix
procedures you will perform.

The Import procedure is used to read data from text, Excel, Lotus 1-2-3,
Quattro Pro, Access, dBase, and Paradox files into Statistix.  

The Export procedure is used to create text, Excel, 1-2-3, Quattro Pro,
Access, dBase, or Paradox file versions of your current Statistix data set so
that the data can be accessed by other programs.

The Print procedure is used to print the contents of the active window.  The
active window can be the data set window, a report, or a graph.  

The File Info procedure produces a report that lists details about the open
file, such as, variable names, variable types, column formats, variable
labels, and value labels.

The Printer Setup procedure is used to select the printer you want to use,
and to select printer options, such as, page orientation.

The View Text File procedure is used to view the contents of text files.
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New

The New procedure is used when you want to start a new Statistix data set. 
It closes the open data set, if any, and displays an empty spreadsheet.  You
then add variables to the new data set using either the Import or Insert
Variables command.

If you have not saved the active data set since it was last modified, a
warning message appears on the screen.  This warning gives you an
opportunity to save the active data set before erasing it from memory.

Press the Yes button to save your data, then close.  If your data hasn’t been
given a file name yet, you’ll be prompted to enter one.  Press the No button
to close without saving.  Press the Cancel button to cancel the New
command altogether.

Open

The Open procedure is used to read a Statistix data file previously created
using the Save, Save As, or Summary File procedure.  The file data set
becomes the active Statistix data set and is displayed on the spreadsheet. 
This procedure can’t be used to open data stored in formats other than the
Statistix format.  Use the Import procedure described later in this chapter to
import data from text, Excel, Lotus 1-2-3, Quattro Pro, Access, dBase, and
Paradox files.

Statistix can only have one data set open at a time.  If you already have a
data set open, it will be replaced with the data contained in the file you
open.  If you haven’t saved the active data set since it was last modified,
Statistix will warn you and give you a chance to save it.
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The Open dialog box is similar to the open dialogs of other Windows
applications.  There’s a File name edit control where you can enter the
name of the file you want to open.  There’s a file list that lists the Statistix
files in the current folder.  The name of the current folder is displayed in the
drop-down list labeled Look in.

Your cursor starts at the File Name edit control.  You can enter the name of
the file you want to open, and then press the OK button to open the file.  

You can also select a file from the file list.  Double click on the name of the
file you want to open.  Use the scroll bar to scroll down the list if the file
you want isn’t visible.  You can change the file list to a different folder
using the Look in drop-down list.  Click on the down arrow on the Look In
list to display the list of drives and folders on your computer.

Save

Statistix data files are ideal for saving your Statistix data for future Statistix
analyses.  All information about your Statistix data is preserved, including
variable names, case omit status, missing values, value labels, and Statistix
dialog box settings.  The Save takes a “snapshot” of the data set’s present
state for future use.  Statistix data files store the data in a compact binary
format—these files can be read and written rapidly.  
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The current file name of your active data set is displayed in the
spreadsheet’s title bar.  If you’ve just created a new data set, then the work
“Untitled” appears on the title bar.

If your data set is untitled when you select the Save procedure from the
menu, the Save As dialog box described below is displayed and you’ll be
asked to enter a file name.  If your data set already has a file name, then that
file is updated with the current state of your data.

Use the Save As procedure described below if you’d like to save a named
data set but with a different file name.

Save As

Use the Save As procedure to save your Statistix data for future Statistix
analyses.  All information about your Statistix data is preserved, including
variable names, case omit status, missing values, value labels, and Statistix
dialog box settings.  

The current file name of your active data set is displayed in the
spreadsheet’s title bar.  If you’ve just created a new data set, then the word
“Untitled” appears on the title bar.  

Use the Save As procedure to save an untitled data set for the first time, or
to save a titled data set using a different file name.  Use the Save procedure
discussed on the preceding page if you want to update the file using the
name that appears on the spreadsheet title bar.

The Save As dialog box has a File name edit control where you can enter
the name of the new file.  There’s a file list that lists the Statistix files in the
current folder.  The name of the current folder is displayed in the drop-
down list labeled Save in.
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Your cursor starts at the File name edit control.  You can enter the name of
the file you want to create, and then press the OK button to save the file.  If
you don’t specify a drive or path, the current drive and path as displayed in
the Save in box are used.  The “.SX” file name extension will be added for
you.

More often than not you’ll want to use a new file name when using the Save
As procedure.  But you can select a file from the file list.  Double click on
the name of the file you want to use to save your data.  Use the scroll bar to
scroll down the list if the name you want isn’t visible.  You can change the
file list to a different folder using the Save in drop-down list.  Click on the
down arrow on the Save in list to display the list of drives and folders on
your computer.

Statistix 8 files can’t be opened using earlier versions of Statistix.  Click on
the Save as type drop down box to select an older file format.  Statistix 4
data files can be opened using Statistix 4.0 and later versions (including
Statistix for Windows 1 and Statistix for Windows 2).  Statistix 7 data files
can be opened using Statistix 7.0 and later versions.  Saving data using an
older format will result in the loss of some information.  Statistix 7 data
files don’t store the transformation expressions history list.  Statistix 4 data
files don’t store dialog box settings.
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Merge Cases

The Merge Cases procedure is used to combine the data of your active data
set with data stored in a second Statistix data file.  Cases of data stored in a
file are appended to the existing variables in the active data set.

There are two steps to using this procedure.  The first step is to select the
merge file using the dialog box displayed below.

Your cursor starts at the File name edit control.  You can enter the name of
the file you want to merge with your current data or double-click on a file ,
and then press the Open button.

You can also select a file from the file list.  Double click on the name of
your merge file.  Use the scroll bar to scroll down the list if the file you
want isn’t visible.  You can change the file list to a different folder using the
Look in drop-down list.  Click on the down arrow on the Look in list to
display the list of drives and folders on your computer.

Once you’ve specified the name of the merge file (HT&WT in our
example), a second dialog box is displayed, as shown on the next page.  The
variables in your current data set are listed in the Variables list.  The
variables found in the merge file are listed in the Merge File Variables box.

The active data set has three variables named AGE, HEIGHT, and
WEIGHT.  The file HT&WT has three variables named SEX, HEIGHT,
and WEIGHT.  Only cases of variables that match variable names in your
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current data set can be appended (HEIGHT and WEIGHT in this example).

Press the OK button to start the merge.  Once the merge is completed, the
data for the HT&WT file variables HEIGHT and WEIGHT will be added at
the bottom of the spreadsheet to the active data set variables HEIGHT and
WEIGHT.  Since the HT&WT variable SEX does not match any variables
in the current data set, its data will be ignored.

Merge Variables

The Merge Variables procedure is used to combine the data of your active
data set with data stored in a second Statistix data file.  Variables of data
stored in a file are added to the existing variables in the active data set.

This procedure is best explained with an example.  There are two steps. 
The first step is to select the merge file.  The dialog box and procedure for
selecting a file are the same as the Merge Cases procedure discussed on the
preceding page.

Once you’ve specified the name of the merge file (we’ll use the same
HT&WT file for this example), a second dialog box is displayed, as shown
on the next page.  
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The variables in your current data set are listed in the Variables list.  The
variables found in the merge file are listed in the Merge File Variables box. 
Select the variables you want to merge from the Merge File Variables box
and move them to the Add Variables box.  Only variables with names that
don’t match variables in your current data set can be selected (SEX is the
only such variable in this example).

Press the OK button to start the merge.  Once the merge is completed,
there’ll be four variables in the current data set—AGE, HEIGHT,
WEIGHT, and SEX.

Merge Labels, Transformations, Etc.

A Statistix data file stores a table of data consisting of numbers, dates, and
strings.  But it also stores other useful information that you may want to
share between separate data files: variable names, variable labels, value
labels, dialog box settings, transformation expressions, and omit
expressions.  The Merge Labels, Transformations, Etc. procedure is used
to merge these kinds of data into an active data set.  Unlike the Merge Cases
and Merge Variables procedures discussed on the preceding pages, this
procedure can also be used to import data into a new data set.  In this way,
any Statistix data file can be used as a template to create a new data file
with the same structure, but with a new table of values.
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There are two steps to using this procedure.  The first step is to select the
merge file.  The dialog box and procedure for selecting a file are the same
as the Merge Cases procedure discussed on page 69.

Once you’ve specified the name of the merge file, a second dialog box is
displayed, as shown below.

There are four check boxes on the dialog box, one for each kind of data that
can be merged into the active data set using this procedure.  Simply check
the boxes for the types of data you want to merge.

You can merge variable names into an active data set with other variables,
or with an empty data set that doesn’t have any variables yet.  The case data
for merged variable names are ignored.

When merging variable labels and value labels, labels for any variables in
the merge file that match the names of variables in the active data set
replace the original labels, if any, in the active data set.

Data box settings refer to the values of edit controls, list boxes, check,
boxes, etc. that appear on data, file, and statistics dialog boxes.

Beginning with Statistix 8, lists of transformation and omit cases
expressions performed on a data set are saved along with the rest of the data
when you use the Save procedure to create a Statistix data file.  These
expressions can be reused by the Transformations and Omit/Select
Restore Cases procedures (see Chapter 2).  By merging these lists from one
data file into the active data set, you can reuse these expressions without
having to retype them.
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Summary File

The Summary File procedure is used to create a new Statistix data file
containing summary statistics of your active data set.  Summary statistics,
such as the mean and standard deviation, can be computed for selected
variables broken down by one or more categorical variables.  The file will
contain one case for each unique combination of values for the categorical
variables.  The current data set isn’t modified by the procedure.  Use the
Open procedure to retrieve the summary statistics for further processing.

Be sure not to confuse this procedure with the Save procedure, which is
used to save an exact copy of your data set.

Specification You must first specify a name for the file you want to create using the
dialog box below.

Your cursor starts at the File name edit control.  You can enter the name of
the file you want to create, and then press the OK button.  If you don’t
specify a drive or path, the file will be saved in the folder displayed in the
Save in box.  If you don’t use the “.SX” file name extension, it’ll be added
for you.

Once you’ve specified the file name, you’re presented with the Summary
File dialog box used to specify the details about the new file, as shown on
the next page.

Chapter 3, File Menu 73



First select the Categorical Variables.  The categorical variables contain
discrete values that are used to identify groups.  The categorical variables
can contain numbers, dates, or strings.  These variables automatically
become variables in the new data file.  To select the categorical variables,
first highlight the variables you want in the Variables list, then press the
right-arrow button next to the Categorical Variables list box.

The next step is to define summary variables.  The summary variable
definition has three parts: the summary variable name, a statistical function
name, and the existing variable used to compute the new variable.  Enter a
new name in the New Variable edit control.  Select a function name from
the Function pull-down list.  Select the Old Variable: Highlight a variable
in the Variables list box, then press the right-arrow button next to the Old
Variable box to copy the variable name.  Once you’ve completed all three
parts, press the right-arrow button next to the Summary Variables list to
add the summary variable definition to the list.

The example dialog box above shows the definition for the summary
variable TOTROSES.  The variable TOTROSES is a new variable that will
be included in the summary file.  It will be computed using the Sum
function based on the current data set variable ROSES.
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CASE     ROSES       BLK       TRT    WITHIN

   1       102         1         1         1

   2         M         1         1         2

   3        84         1         2         1

   4        81         1         2         2

   5        67         1         3         1

   6        83         1         3         2

   7        71         1         4         1

   8         M         1         4         2

   9        53         1         5         1

  10         M         1         5         2

  11        71         2         1         1

  12        79         2         1         2

  13        76         2         2         1

  14         M         2         2         2

  15        74         2         3         1

  16         M         2         3         2

  17        51         2         4         1

  18        63         2         4         2

  19        63         2         5         1

  20        61         2         5         2

There are nine statistical functions that can be used with the Summary File
procedure: 

N number of observations in the group with non-missing
values

Missing number of observations in the group with missing values
Mean mean
SD standard deviation
Min minimum value
Max maximum value
Sum sum
Variance variance
SE standard error of the mean

Data

Restrictions

There must be at least one and no more than five categorical variables. 
Numeric values of categorical variables cannot exceed 99,999 and will be
truncated to whole numbers.  String values of a categorical variable will be
truncated to ten characters.

Example To illustrate the summary file procedure, consider the data from a split
block design where the number of saleable roses was counted (Bingham and
Fienberg, 1982).  Five treatments were applied in two replicates.

Please refer to the Summary File dialog box on the preceding page.  The
variables BLK and TRT have been selected from the Variables list and
copied to the Categorical Variables list box.  These two variables will be
included in the summary file.  
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CASE       BLK       TRT        N   TOTROSES

   1         1         1        1        102

   2         1         2        2        165

   3         1         3        2        150

   4         1         4        1         71

   5         1         5        1         53

   6         2         1        2        150

   7         2         2        1         76

   8         2         3        1         74

   9         2         4        2        114

  10         2         5        2        124

Two summary variables were defined and are listed in the Summary
Variables list box.  The first variable N is computed using the N function
with the variable ROSES as the argument.  It will contain the number of
observations per category for ROSES.  The second variable TOTROSES is
computed using the Sum function and the variable ROSES.  It will contain
the group sums of ROSES.  

The resulting data file ROSESTAT.SX contains the following data:
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Import

The Import procedure is used to import data from files created by other
programs.  The file formats supported by Statistix are Excel, Lotus 1-2-3,
Quattro Pro, Access, dBase, Paradox, and text files.  The Import procedure
adds variables to a new or existing Statistix data set.  Each column imported
from the file becomes a new variable in your Statistix data set.

An alternative method of importing data is to paste data from the Windows
clipboard directly into the Statistix spreadsheet.  See Chapter 2 for details.

The first step in importing data is to select an input file.

Your cursor starts at the File name edit control.  You can type in the name
of the file from which you want to import data, or you can select the file
from the list of files.  You can change the type of files listed in the file list
box by clicking on the Files of type arrow and selecting a different file type
(1-2-3, Access, etc.).  You can select a different drive or folder from the
Look in pull-down list.

Once you’ve specified the file name, Statistix opens one of three types of
dialog boxes depending upon the type of the file you selected: one for
spreadsheet files, one for data base files, and one for text files.  An example
dialog box for an Excel spreadsheet file is displayed on the next page.  An
example dialog box for an Access data base file is displayed on page 80. 
The text file dialog box is presented on page 81.
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Import Excel, Lotus 1-2-3, & Quattro Pro

After specifying the name of an Excel, Lotus 1-2-3, or Quattro Pro file as
discussed on the preceding page, the following Import dialog appears.

The contents of the spreadsheet file are displayed at the top of the dialog
box.  You can use the scroll bars to view different portions of the file.  If the
file you select has more than one page, the page names appear in tabs below
the rows of data.  Click on a page-name tab to import data from that page. 
You can only import data from one page at a time.

You can import the entire file, select a subset of columns, or select a
rectangular array of data.  To select one column, click on the column
heading for that column.  To select a range of columns, drag the mouse over
the column headings.  To select two or more columns that aren't contiguous,
click on the column headings while holding down the control key.  You can
also select an arbitrary range of cells.  Drag your mouse from the top-left
cell to the bottom-right cell of the rectangle you want to import.  To import
the entire file, don't select any columns or cells (to cancel a selection, click
on a single cell).
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Select one of the Variable Names radio buttons.  You must indicate
whether you want to have the variable names imported from the file, have
names generated automatically, or enter the names manually.  Select a
method by clicking on the appropriate radio button.  

If you select Read Names From File, the first row of the spreadsheet file is
scanned for legal variable names.  If the text in the cell used for the variable
name includes a data type (I for integer, R for real, D for date, and S for
string), then the resulting variable will be the data type specified.  The letter
representing the data type follows the variable name inside parentheses. 
String types require a number after the letter S to indicate the maximum
length (e.g., STUDENT(S15)).  If the data type is not specified, the variable
type is determined automatically by data found on the first rows of the input
file.

If you select Generate Names, then the standard one- or two-letter column
headings (A, B, C,  .  .  .  AA, AB, AC, etc.) are used for variable names.  In
this case, the actual data should start in the first row of the file.

If you select the Enter Names Manually method, you must enter a list of
variable names in the Import Variable Names edit control, one name for
each column of data you want to import.  You can specify the data types of
the variables when you list the variable names.  Use the letters I, R, D, and
S in parentheses after the variable names to identify integer, real, date, and
string types.  String types require a number after the letter S to indicate the
maximum length.  If you don’t specify a data type, real is assumed.

One common problem associated with importing data from spreadsheet files
is that variables are sometimes assigned an inappropriate data type (real,
date, or string).  In particular, variables that should be assigned the real type
are assigned the string type.  Sometimes this happens when there are extra
headers in the files, and other times it’s caused by blanks appearing in a
column.  There are several approaches to working around this problem.  If
you’re reading variables names from the first line in the file, try explicitly
declaring the data type as part of the variable names (e.g., change AGE to
AGE(R)).  Another approach is to select Enter Names Manually and
explicitly declare the data types in the variable name list.  A third approach
is to change the data types of variables one at a time using transformations
(e.g., AGE(R) = NUMBER(AGE)).
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Import Access, dBase, & Paradox

After specifying the name of an Access, dBase, or Paradox file as discussed
on page 77, the following Import dialog appears.

The contents of the spreadsheet file are displayed at the top of the dialog
box.  You can use the scroll bar to view columns to the right of the display
area.  If the file you select has more than one table, the table names appear
in tabs below the rows of data.  Click on a table-name tab to import data
from that table.  You can only import data from one table at a time.

You can import all the columns from the file, or select one or more columns
for importing.  To select one column, click on the column heading for that
column.  To select a range of columns, drag the mouse over the column
headings.  To select two or more columns that aren't contiguous, click on
the column headings while holding down the control key.
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Import Text File

After specifying the name of a text file as discussed on page 77, the
following Import Text File dialog box appears.  The contents of the file
you selected are displayed at the top of the dialog box.  The dialog lists the
variables in your active data set, if any, in the Variables box.  It has radio
buttons to indicate from where the new variable names will.  It has text
boxes used to enter new variable names, a format statement, and a string
used in the import file to indicate missing values.

The Import procedure is used to add variables to a new or existing data set. 
You must provide a valid variable name for each column of data you want
to import.  Use the Variable Names radio buttons to indicate where you
want Statistix to find the variable names.  Select Read Names From File if
the text file you’re importing has variable names on the first line of text. 
Select Generate Names to have Statistix generate variable names starting
with V001.  Select Enter Names Manually if you want to type a list of
variable names in the Import Variable Names text box.  

In Statistix, you can use integer, real, date, and string data.  However, a par-
ticular column can only be used to store one type of data.  You can specify
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the data type of variables when you list the variable names.  Use the letters
I, R, D, and S in parentheses after the variable names to identify integer,
real, date, and string types.  String types require a number after the letter S
to indicate the maximum length.  In the example dialog box on the
preceding page, the variable NAME is a string variable with a maximum
length of 15.  The variable BIRTHDATE is a date variable.  The entry for
the variable CONC does not declare a data type, so it’s assigned the real
data type.  These data type rules apply to variable names entered manually
in the dialog box or read directly from the input file.

You can use the VAR1 .. VAR99 syntax in the variable list to abbreviate a
long list of variables.  Specify the data type for the entire list of variables by
entering the data type at the end of the list (e.g., Q1 .. Q15(I)).

The Format Statement edit control is required when the fields of the import
file are not delimited with comma, spaces, or tabs.  The format statement is
used to indicate where the data for each variable begins and ends.  The
format statement is discussed in more detail below.  

Statistix interprets the letter M and a period as a missing value.  You can
enter an additional string (e.g., 999 or N/A) in the Alternate Missing Value
Indicator field to flag missing values.

Comma and

Quote Files

A “Comma and Quote” text file is a particular text format made popular by
spreadsheet and database programs.  In a comma and quote file, columns of
data are separated by commas, spaces, or tabs.  String data, such as a
person’s name, are enclosed in quotation marks (“” or ‘’).  One line of text
corresponds to one case in Statistix.  The dialog box on the preceding page
shows an example of a comma and quote file.  If the file you want to import
data fits the description of a Comma and Quote text file, then you needn’t
use the Format Statement, which greatly simplifies the import process.

Format

Statement

The Format Statement in the Import procedure is used to import columns of
data from a text file when the data are arranged with fixed field widths.  We
call files of this type a Formatted file to distinguish them from Comma and
Quote files.  The format statement is used to specify the exact locations of
data for each input variable.

The use of the format statement can be tedious and should be avoided
whenever possible.  The reasons for using a format statement include:
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Fisher, E          11/02/39IA  228

Haley, J           01/10/53IA  182

Hickman, D         10/23/26IA  249

Johnson, M         01/01/38IA  259

Sellman, G         10/20/20IA  224

Thorn, J           11/16/33IA  189

Baur, J            12/24/73NE  137

Christianson, E    10/23/47NE  173

Farrow, C          10/14/58NE  177

Greer, R           11/28/13NE  241

Keller, G          12/13/40NE  225

Stanley, J         12/15/28NE  337

Steele, A          12/09/72NE  189

Stone, O           11/26/61NE  140

Swanson, D         12/15/44NE  196

Taylor, E          11/20/33NE  262

Thompson, B        11/09/21NE  261

Tucker, T          10/26/24NE  356

Williams, G        10/04/70NE  191

Wright, O          11/21/35NE  197

•  Columns of data are not comma, tab, or space delimited.
•  String data are not enclosed in quotation marks.
•  You want to skip unwanted columns of data.
•  The data for one case requires more than one line in the input file.

Consider the formatted file below.

The strings in the first column of data aren’t enclosed in quotation marks. 
Also, there aren’t any delimiting characters between the column of dates
and the two-letter state abbreviations.  A format statement is required to
indicate where each column begins and ends.

The Import Text File dialog box to import this file is displayed on the next
page.  The format statement is:

  A15 3X A8 A2 F5

Each variable requires a format specification.  A single format specification
consists of a letter followed by a number indicating the field width.  There
are five format specifications that can be used for variable data.  The A
format (A for automatic) can be used for string, date, and numerical
variables.  There are four additional format specifications that can be used
for integer and real variables: D - Decimal format, E - Exponential format, F
- Fixed format, and I - Integer format.  The differences between these types
are more important when used with the Export and Print procedures
discussed later in this chapter.  Any integer or real variable can be imported
using the F format.
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In all cases, enter a variable’s format specification by typing the letter
followed by a number representing the total field width for the variable. 
The field width can include blank spaces before and after the actual field of
data.  

In the example above, the format specification A15 is used for the first
variable NAME, indicating that the first 15 characters of each input line
contains the string value for that variable.  The format specification 3X is
used in the example to skip three spaces on the input line between the data
for the variables for NAME and BIRTHDATE.  The last format
specification—F5 for the variable CONC—includes two characters for the
leading spaces and three characters for the three digit numbers.

The F format can be used to insert a decimal point into a column of
numbers at a specific position.  Suppose that the column of data for the
variable CONC was entered as ten times the actual value, such that the
number for the first case 228 represented the value 22.8.  By specifying the
format F5.1 instead of F5, a decimal point would be inserted one position
from the right side.

If field widths repeat, we can use a shorthand notation rFw to reduce the
size of the format statement.  For example, the format F5.1 F5.1 F5.1 can be
abbreviated as 3F5.1.  
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A repeat factor can be applied to a list of formats inside parentheses too. 
For example, the format statement A8 I2 F8.2 A8 I2 F8.2 can be
abbreviated using the statement 2(A8 I2 F8.2).

The X format is used to skip spaces between variables.  The general format
is rX where r indicates the number of spaces to skip.  For example, we’d use
15X to skip the first 15 characters of the input line and import only the
variables BIRTHDATE, STATE, and CONC.

Long records are sometimes split into several lines in an input file.  Suppose
you wanted to read 17 variables from a file, but the first ten variables were
listed on one line and the last seven variables were listed on the following
line.  You would then need to use the / character in the format statement to
show where the line break occurs:

  10F8 / 7F8

Importing a

Single

Variable

If a file contains the data for a single variable, you can use the “single”
option to read all the data items, regardless of how many columns there are
in the file.  Just enter the word “single” in the space provided for the input
format statement.  The values will be read left to right, top to bottom.

Comment

Lines

Statistix ignores any lines in a text file that begin with the characters “(”,
“$”, or “#”.  This lets you add comment lines to your text files.

Export

Statistix files can’t be accessed directly by other programs.  Use the Export
procedure to create files containing Statistix data that can be used by other
programs.  The file formats you can export data to are Excel, Lotus 1-2-3,
Quattro Pro, Access, dBase, Paradox, and text files.  Most programs can
accept text files, and many can accept data from one or more of these
popular spreadsheet programs.

An alternative method of exporting data to other programs is to use the
Windows clipboard.  You can copy Statistix spreadsheet data to the
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clipboard and then paste the data into another application.

Specify a name for the file you want to create using the Export dialog
shown below.  

The file you create will be saved in the folder displayed in the Save in box. 
You can select a different disk or folder by clicking on the Save in arrow
and making a new selection from the list.  Enter a file name in the File
name edit control.  If you include a file name extension in the file name, it
must be a registered extension (see file type in Windows help), or another
extension may be added.  Select the file type you want to create by clicking
on the arrow for the Save as type box and making your selection from the
list.  

After you enter a file name, press the OK button.  There are three possible
Export dialog boxes that will appear depending upon the file type.  The
dialog box shown on the next page is used for spreadsheet program files
(Excel, 1-2-3, and Quattro Pro).  The dialog box shown on page 88 is used
for database program files (Access, dBase, and Paradox).  The dialog box of
page 89 is used for text files.
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Export Excel, Lotus 1-2-3, & Quattro Pro

The dialog box shown below appears after you specify an export file name
for an Excel, Lotus 1-2-3, or Quattro Pro file.  

All you need to do now is to select the variables you want to export. 
Highlight one or more variables in the Variables list, then press the right-
arrow button to move the highlighted variables to the Export Variables list. 
You can highlight all the variables in the list by clicking on the first variable
in the list, and then dragging the mouse to the last variable.  Press the OK to
create the file.  

The selected variables will appear in the new file in the order that you’ve
placed them in the Export Variables list.  Variable names are listed in the
first row of the new file.  Omitted cases are not exported.
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Export Access, dBase, & Paradox

This procedure is used to export Statistix data to a database program file. 
After you specify the name of an Access, dBase, or Paradox file in the
Export dialog box shown on page 86, the dialog box shown below appears.

All you need to do now is to select the variables you want to export. 
Highlight one or more variables in the Variables list, then press the right-
arrow button to move the highlighted variables to the Export Variables list. 
You can highlight all the variables in the list by clicking on the first variable
in the list, and then dragging the mouse to the last variable.  Press the OK to
create the file.  

The selected variables will appear in the new file in the order that you’ve
placed them in the Export Variables list.  Statistix variable names become
field names in the new file.  Omitted cases are not exported.
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Export Text File

An ASCII file is a standard text file format that is commonly used to
transfer data between different programs.  The dialog box shown below
appears after you specify an export file name for a text file as described on
page 86.  

First select the variables you want to export.  Highlight one or more
variables in the Variables list, then press the right-arrow button to move the
highlighted variables to the Export Variables list.  You can highlight all the
variables by clicking on the first variable, and then dragging the mouse to
the last variable in the list.  The selected variables will appear in the new
file in the order that you’ve placed them in the Export Variables list.  

Next select a File Format.  A Comma and Quote text file separates
columns of data using commas, and string data, such as a person’s name,
are enclosed in quotation marks.  An example comma and quote file is
displayed on page 81.  A Tab Separated file uses the tab character to
separate columns of data.

In a Fixed Format file, each column has a fixed width such that columns of
data line up vertically.  String data needn’t be enclosed in quotation marks
and commas aren’t used to separate columns.  You have the option of
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               General     Example                                      

Name           Format      Format      Example Appearance   Notes              

Automatic      Aw          A10         John Smith         

                                         01/05/92

                                               65

                                         12.34567

                                              

Decimal        Dw.s        D11.5            12.345          s <= w - 4   

                                        3.4523E-03                        

                                                                        

Exponential    Ew.s        E10.4        1.234E+01           s <= w - 4   

                                        3.452E-03                         

                                                                        

Fixed          Fw.d        F7.2          12.34              d < w - 2    

                                         0.003                           

                                                                        

Integer        Iw          I2           12                                

                                         0                                

                                                                        

Space          rX          10X                              inserts spaces

                                                                        

New line       /           /                                inserts line feed

specifying a Format Statement that specifies the field widths and numeric
formats for each variable.  The format statement is discussed in detail
below.

Check the Export Variable Names check box to have the variables included
on the first line of the export file.  Variable types for variables other than
real variables are included in the list of names in a comma and quote file.

Check the Export Value Labels to have value labels written to the file for
numeric variables for which you’ve defined value labels, rather than the
numeric codes themselves.

Format

Statement

A format statement is a list of format specifications used to indicate how
you want the data for each variable to appear.  A variable format
specification consists of a letter, a field width, and sometimes a number for
decimal places.  If you don’t enter a format statement, Statistix will
construct a default format statement using the Column Format information
discussed in Chapter 2.  By omitting the format statement, the data are
formatted more or less as it’s displayed in the spreadsheet window.  The
default format guarantees at least one space between variables.  

The different format specifications are listed in the table below.  In the
table, “w” is the field width, “s” is the number of significant digits, “d” is
the number of digits to the right of the decimal point, and “r” is the repeat
factor (defined below).
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The A format can be used for variables of any data type.  The D, E, F, and I
formats are used for integer and real variables, each resulting in a different
numeric format.

The A format displays numbers using an integer format when the number is
a whole number, or a decimal format when the number contains a fraction. 
For numbers with a fraction, as many digits will be displayed as possible
but trimming any trailing zeros.  The automatic format works well for data
you’ve entered manually because the numbers generally are displayed just
as you’ve entered them.  For computed variables, such as variables created
using the Transformations procedure, the A format often displays
nonsignificant digits.

The D format displays numbers using a decimal format where the decimal is
free to move about to maximize the number of digits displayed.

The F format displays numbers in a decimal format with a fixed number of
decimal places.

The E format displays numbers in exponential format, or scientific notation. 
A number displayed in exponential format has two parts, the mantissa and
the exponent.  The mantissa is a number displayed as a decimal number
that’s always greater than or equal to 1.0 and less than 10.0.  The exponent
is displayed using the letter E followed by a signed integer.  The number
represented in this fashion is the mantissa multiplied by 10 raised to the
exponent.  For example, the number 4.23E-02 is equal to 4.23 × 10 , or-2

0.0423.  This format is useful for very small and very large numbers.

The I format displays numbers as a whole number.  When a number that
includes a fraction is displayed using this format, the number is rounded off
to the nearest whole number.

The X and / are not used as format specifications for variables but are used
to insert spaces and new lines into the output record.

Any of the format specifications can have a number in front called the
repeat factor.  This is used to abbreviate the format statement when several
variables are to be formatted in a similar manner.  A repeat factor can also
be placed in front of a list of format specifications inside parentheses, as in:

  3I5 2(I1 1X F4.2 F6.2) E10.4
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When using format specifications, remember to make “w” large enough to
account for the minus sign for negative numbers and for extra space
between variables.  String data are left justified, so you should always use
the X format in front of a format for a string variable to insert a space.

Log File

A log file is a text file that lists the procedures performed during a Statistix
session.  Log files are particularly useful for verifying that a series of
transformations or omit cases statements were performed as intended.  A
log file can be viewed and printed using the Statistix View Text File proce-
dure during a Statistix session to review the work performed.  Each
procedure is date- and time-stamped so that log file entries can be matched
with printed output.

To start a log file, select the Log File procedure and enter a file name.  If
you don’t enter a file name extension, the extension .LOG will be added to
the file name.

If you enter the name of a file that already exists, you can choose to have
new entries appended to the existing file or you can choose to replace the
old file with a new log file.
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Log File, 05/15/00, 15:46

   c:\statistix\agestudy.log

Open, 05/15/00, 15:46

   c:\statistix\choleste.sx

Transformations, 05/15/00, 15:47

   ageclass = 10 * Trunc (age / 10)

Transformations, 05/15/00, 15:47

   conclass = 40 * Trunc (conc / 40)

Print, 05/15/00, 15:48

   AGE,AGECLASS,CONC,CONCLASS,STATE

Histogram, 05/15/00, 15:49

   AGE

   Normal Curve

Cross Tabulation, 05/15/00, 15:50

   AGECLASS,CONCLASS

Save, 05/15/00, 15:52

   c:\statistix\choleste.sx

Once you’ve started a log file, it continues to record commands until you
either start a new log file, or until you exit Statistix.  

The example log file below lists the procedures used during a short Statistix
session.

The first entry in the log file shows when the file was started and gives the
name of the log file.  The remaining entries list the activities that followed:
a Statistix file named CHOLESTE.SX was opened, two transformations
were performed, the data were printed, a histogram was displayed, and a
cross tabulation report was obtained.  Finally, the modified data set was
saved.

View Text File

This procedure is used to view a text file on the screen.  There are a number
of text files you may be interested in viewing without leaving Statistix.  You
may want to check the contents of a Statistix log file to refresh your
memory about transformations you’ve made.  Or you may want to review a
Statistix report file you’ve saved after running an analysis of your data. 
You may even want to look at a text file you want to import data from.

Once you’ve selected a file to view from the standard open dialog box, the
file is displayed in a window on the screen, as shown on the next page.
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You can scroll forward and backward through the file using the scroll bar
and the page up and page down keys.  You can print the file by selecting
Print from the File menu.  You can select another file for viewing by
selecting Options from the Results menu.

File Info

File Info is a report that provides basic information about the Statistix file
you currently have open.  The report lists variable names, variable data
types, column formats, variable labels, and value labels.  The report is first
displayed in a window on the screen, but can also be printed or saved in a
file.  An example report is shown on the next page.
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File Name   C:\Statistix\Choleserol.sx

File Label  Cholesterol concentration/age study of women from two states

Variables          5
Selected Cases    30
Omitted Cases      0
Total Cases       30

Variable    Data Type   Format   Variable Label/Value Labels      

AGE         Real        F 9.0    
CONC        Real        F 9.0    Cholesterol concentration
STATE       Integer     A 1      
                                 1 Iowa            2 Nebraska
AGECLASS    Integer     A 6      
CONCLASS    Integer     A 6

The report is largely self-explanatory.  The column formats are coded:
A-automatic, D-decimal, E-exponential, F-fixed, and I-integer.  The column
format letter is followed by the column width and sometimes the number of
decimal places.  See Column Formats in Chapter 2 for more information
about column formats.

The File Info report can be printed or saved in a file just like other Statistix
reports.  Select Print from the File menu to print the report.  Select Save As
from the File menu to save the report in a file.

Print

The Print procedure is used to print the contents of the active window.  In
the case of Statistix reports and graphs, the report or graph is simply printed
on the default printer.  When the spreadsheet is the active window, the Print
dialog box appears as shown on the next page.

First select the variables you want to print.  Highlight one or more variables
in the Variables list, then press the right-arrow button to move the
highlighted variables to the Print Variables list.  You can highlight all the
variables by clicking on the first variable in the list, and then dragging your
mouse to the last variable.  The selected variables will be printed in the
order that you’ve placed them in the Print Variables list.
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You have the option of specifying a Format Statement that specifies the
field widths and numeric formats for each variable.  The format statement is
discussed in detail below.

Check the Print Case Numbers box if you’d like to have case numbers
printed on each line of the report.  

If you’ve defined value labels for any of your variables, check the Print
Value Labels box to have the labels printed rather than the numeric codes.

You can specify the font size by entering a number in the Report Font Size
box.  Typical values range from 10 to 12, but you can enter a smaller value
to squeeze more data on a page.

When you finish making your selections, you can press the Print button to
send the report directly to the printer.  It’s often a better idea to press the
Preview button instead so you can look at the report on the screen to verify
that the report is formatted correctly.  While previewing the report, you
have the option of printing the report, or saving it to a file.

Format

Statement

A format statement is a list of format specifications used to indicate how
you want the data for each variable to appear on the report.  A variable
format specification consists of a letter, a field width, and sometimes a
number for decimal places as well.  If you don’t enter a format statement,
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               General     Example                                      

Name           Format      Format      Example Appearance   Notes           

Automatic      Aw          A10         John Smith         

                                         01/05/92

                                               65

                                         12.34567

                                              

Decimal        Dw.s        D11.5            12.345          s <= w - 4   

                                        3.4523E-03                        

                                                                        

Exponential    Ew.s        E10.4        1.234E+01           s <= w - 4   

                                        3.452E-03                         

                                                                        

Fixed          Fw.d        F7.2          12.34              d < w - 2    

                                         0.003                           

                                                                        

Integer        Iw          I2           12                                

                                         0                                

                                                                        

Space          rX          10X                              inserts spaces

                                                                        

New line       /           /                                inserts line feed

Statistix will construct a default format statement for you using the Column
Format information discussed in Chapter 2.  By omitting the format
statement, the data are formatted more or less as it’s displayed in the
spreadsheet window.  The default format guarantees at least one space
between variables.  

The different format specifications are listed in the table below.  In the
table, “w” is the field width, “s” is the number of significant digits, “d” is
the number of digits to the right of the decimal point, and “r” is the repeat
factor.

The A format can be used for variables of any data type.  The D, E, F, and I
formats are used for integer and real variables, each resulting in a different
numeric format.

The A format displays numbers using an integer format when the number is
a whole number, or a decimal format when the number contains a fraction. 
For numbers with a fraction, as many digits will be displayed as possible
but trimming any trailing zeros.  The automatic format works well for data
you’ve entered manually because the numbers generally are displayed just
as you’ve entered them.  For computed variables, such as variables created
using the Transformations procedure, the A format often displays
nonsignificant digits.

The D format displays numbers using a decimal format where the decimal is
free to move about to maximize the number of digits displayed.
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The F format displays numbers in a decimal format with a fixed number of
decimal places.

The E format displays numbers in exponential format, or scientific notation. 
A number displayed in exponential format has two parts, the mantissa and
the exponent.  The mantissa is a number displayed as a decimal number
that’s always greater than or equal to 1.0 and less than 10.0.  The exponent
is displayed using the letter E followed by a signed integer.  The number
represented in this fashion is the mantissa multiplied by 10 raised to the
exponent.  For example, the number 4.23E-02 is equal to 4.23 × 10 , or-2

0.0423.  This format is useful for very small and very large numbers.

The I format displays numbers as a whole number.  When a number that
includes a fraction is displayed using this format, the number is rounded off
to the nearest whole number.

The X and / are not used as format specifications for variables but are used
to insert spaces and line feeds into the output record.

Any of the format specifications can have a number in front called the
repeat factor.  This is used to abbreviate the format statement when several
variables are to be formatted in a similar manner.  A repeat factor can also
be placed in front of a list of format specifications inside parentheses, as in:

  3I5 2(I1 1X F4.2 F6.2) E10.4

When using format specifications, remember to make “w” large enough to
account for the minus sign for negative numbers and for extra space
between variables.  String data are left justified, so you should always use
the X format in front of a format for a string variable to insert a space.

The sample report on the next page shows the results for the format
statement that appears in the example dialog box on page 96.
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CASE      AGE AGECLASS     CONC CONCLASS STATE

   1     46.0       40    181.0      160 Iowa
   2     52.0       50    228.0      200 Iowa
   3     39.0       30    182.0      160 Iowa
   4     65.0       60    249.0      240 Iowa
   5     54.0       50    259.0      240 Iowa
   6     33.0       30    201.0      200 Iowa
   7     49.0       40    121.0      120 Iowa
   8     76.0       70    339.0      320 Iowa
   9     71.0       70    224.0      200 Iowa
  10     41.0       40    112.0       80 Iowa
  11     58.0       50    189.0      160 Iowa
  12     18.0       10    137.0      120 Nebraska
  13     44.0       40    173.0      160 Nebraska
  14     33.0       30    177.0      160 Nebraska
  15     78.0       70    241.0      240 Nebraska
  16     51.0       50    225.0      200 Nebraska
  17     43.0       40    223.0      200 Nebraska
  18     44.0       40    190.0      160 Nebraska
  19     58.0       50    257.0      240 Nebraska
  20     63.0       60    337.0      320 Nebraska
  21     19.0       10    189.0      160 Nebraska
  22     42.0       40    214.0      200 Nebraska
  23     30.0       30    140.0      120 Nebraska
  24     47.0       40    196.0      160 Nebraska
  25     58.0       50    262.0      240 Nebraska
  26     70.0       70    261.0      240 Nebraska
  27     67.0       60    356.0      320 Nebraska
  28     31.0       30    159.0      120 Nebraska
  29     21.0       20    191.0      160 Nebraska
  30     56.0       50    197.0      160 Nebraska

Printer Setup

Selecting Printer Setup from the Statistix File menu gives you access to the
Windows printer setup dialog box.  You can use the procedure to select a
printer or change the printer’s properties.  

Exit

The Exit command is used to exit Statistix.  If your open data file has been
modified since you last saved it, Statistix warns you and gives you a chance
to save it before exiting.
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C        H        A        P        T        E        R

4

Summary and Descriptive Statistics

These procedures are designed to help you condense, summarize, and
display data.  You’ll use them in the preliminary stages of analysis because
they allow you to recognize general patterns and they suggest directions for
further analysis.  They’re particularly useful for detecting “unusual” values.  

The utility of these procedures isn’t restricted to the preliminary stages of
analysis, however.  They’re important tools for evaluating the results of a
variety of analyses.  For example, after fitting models to your data, you can
use these procedures to inspect the resulting residuals.

The Descriptive Statistics procedure computes the mean, standard
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deviation, confidence intervals, median, minimum, maximum, and other
descriptive statistics for a list of variables.  A grouping variable can be used
to compute and display statistics broken down by group.

The Frequency Distribution procedure tabulates frequency tables,
including counts and percentages, for discrete or continuous data.

A Histogram is a bar-chart used to graphically represent the frequencies of
discrete data and the frequency density of continuous data.

A Pie Chart graphically represents frequencies, sums, or means using the
slices of a pie.

A Stem and Leaf Plot is a frequency graph similar to a histogram where
the digits of the data are used to construct the bars of the graph.

The Percentiles procedure is used to compute arbitrary percentiles for a list
of variables.

A Box and Whisker Plot graphically presents the center and the spread of
a variable.  A grouping variable can be used to produce a box plot for each
group.

The Error Bar Chart graphically represents the mean and standard
deviation for a list of variables or groups of a variable.

A Cross Tabulation table displays the frequencies and percentages for
each combination of variable values.

The Scatter Plot is used to graph a two dimensional scatter diagram.  Up to
five pairs of X and Y variables can be plotted on the same graph.

The Breakdown procedure computes the sum, mean, sample size, and
standard deviation for a variable broken down in a nested fashion using the
levels of up to five grouping variables.

The procedures are illustrated with example data from Snedecor and
Cochran (1980, p. 386).  The data are the blood serum cholesterol levels
and ages of 30 women, 11 from Iowa and 19 from Nebraska.  The
cholesterol concentrations are in the variable CONC, and the ages are in
AGE.  The variable STATE indicates the state, with Iowa = 1 and
Nebraska = 2.  Two additional categorical variables were created using
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CASE       AGE  AGECLASS      CONC  CONCLASS     STATE

   1        46        40       181       160         1

   2        52        50       228       200         1

   3        39        30       182       160         1

   4        65        60       249       240         1

   5        54        50       259       240         1

   6        33        30       201       200         1

   7        49        40       121       120         1

   8        76        70       339       320         1

   9        71        70       224       200         1

  10        41        40       112        80         1

  11        58        50       189       160         1

  12        18        10       137       120         2

  13        44        40       173       160         2

  14        33        30       177       160         2

  15        78        70       241       240         2

  16        51        50       225       200         2

  17        43        40       223       200         2

  18        44        40       190       160         2

  19        58        50       257       240         2

  20        63        60       337       320         2

  21        19        10       189       160         2

  22        42        40       214       200         2

  23        30        30       140       120         2

  24        47        40       196       160         2

  25        58        50       262       240         2

  26        70        70       261       240         2

  27        67        60       356       320         2

  28        31        30       159       120         2

  29        21        20       191       160         2

  30        56        50       197       160         2

Transformations.  The variable AGECLASS assigns the ages to ten-year
age classes.  For example, if a woman’s age were within the range 50 to 59,
the value of AGECLASS would be 50.  AGECLASS is created using the
transformation

  AGECLASS = 10 ( TRUNC (AGE/10)

CONCLASS is created in a similar manner, and assigns each case to a 40
mg/100 ml cholesterol concentration class.  It’s created as follows:

  CONCLASS = 40 ( TRUNC (CONC/40)

For example, CONCLASS is assigned the value 200 for any case for which
the value of CONC is in the 200 to 239 range.

These example data are listed below.  They’re also distributed with the
Statistix software in the data file Cholesterol.sx.
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Descriptive Statistics

Specification

The Descriptive Statistics procedure produces a summary table of
descriptive statistics for a list of variables.  You can select the statistics you
want tabulated from the following list: number of non-missing cases,
number of missing cases, sum, mean, standard deviation, variance, standard
error of the mean, confidence interval of the mean, coefficient of variation,
median, minimum and maximum, first and third quartiles, median absolute
deviation, biased variance, skew, and kurtosis.  

Select the variables for which you want to compute descriptive statistics. 
Highlight the variables you want to select in the Variables list box, then
press the right arrow button to move them to the Descriptive Variables list
box.  To highlight all variables, click on the first variable in the list, and
drag the cursor to the last variable in the list.  

If you select a Grouping Variable, the summary statistics will be tabulated
separately for each value found in the grouping variable.  You can change
the C.  I.  Percentage Coverage for mean confidence intervals.  Select the
statistics you want reported by checking off the Statistics to Report check
boxes.  
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Descriptive Statistics

Variable          N        Mean          SD     Minimum     Maximum

AGE              30      48.567      16.347      18.000      78.000
AGECLASS         30      44.000      16.316      10.000      70.000
CONC             30      213.67      59.751      112.00      356.00
CONCLASS         30      192.00      60.708      80.000      320.00
STATE            30      1.6333      0.4901      1.0000      2.0000

Descriptive Statistics

                     AGE    AGECLASS        CONC    CONCLASS       STATE

N                     30          30          30          30          30
Missing                0           0           0           0           0
Sum                 1457        1320        6410        5760          49
Lo 95% CI         42.463      37.908      191.36      169.33      1.4503
Mean              48.567      44.000      213.67      192.00      1.6333
Up 95% CI         54.671      50.092      235.98      214.67      1.8164
SD                16.347      16.316      59.751      60.708      0.4901
Variance          267.22      266.21      3570.2      3685.5      0.2402
SE Mean           2.9845      2.9789      10.909      11.084      0.0895
C.V.              33.659      37.081      27.965      31.619      30.008
Minimum           18.000      10.000      112.00      80.000      1.0000
1st Quarti        37.500      30.000      180.00      160.00      1.0000
Median            48.000      40.000      199.00      180.00      2.0000
3rd Quarti        59.250      52.500      251.00      240.00      2.0000
Maximum           78.000      70.000      356.00      320.00      2.0000
MAD               10.000      10.000      27.500      20.000      0.0000
Biased Var        258.31      257.33      3451.2      3562.7      0.2322
Skew             -0.1009     -0.1822      0.6711      0.5851     -0.5534
Kurtosis         -0.7008     -0.3663      0.2762     -0.0783     -1.6938

Data

Restrictions

The grouping variable can be of any data type.  Real values will be
truncated to whole numbers.  Strings will be truncated to ten characters.

Example The data are from Snedecor and Cochran (1980, p. 386), described at the
beginning of this chapter.  In the dialog box on the preceding page, all five
variable names have been moved from the Variables list box to the
Descriptive Variables list box.  No grouping variable was specified.  The
results are:

If you select more than five statistics, the table is presented with the
variable names along the top.  For example, the report below lists all of the
statistics available.

The median absolute deviation (MAD) is the median value of the absolute
differences among the individual values and the sample median.  See
Snedecor and Cochran (1980, pp. 78-81) for definitions of the other
statistics.
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Frequency Distribution

The Frequency Distribution procedure produces a frequency tabulation for
discrete or continuous data.  It computes the frequency, relative frequency
(percentage of total), and cumulative and relative frequencies of data.

Specification

Select the variables for which you want to display frequency tables.  High-
light the variables you want to select in the Variables list box, then press
the right arrow button to move them to the Frequency Variables list box. 
To highlight all variables, click on the first variable in the list, and while
holding the mouse button down, drag the cursor to the last variable in the
list.  You can also move a variable by double-clicking its name.  To delete
variables from the Frequency Variables list, highlight the variables you
want to delete, then press the left arrow button.

You can specify Low, High, and Step values to control the number of bins
and the width of each bin.  The value you enter for low is the lowest value
for the first bin.  The value you enter for high is the highest value of the last
bin.  The value you enter for a step is the width of each bin.  If you don’t
specify these values, frequencies are reported for each discrete value.

Data

Restrictions

Variables of any data type can be specified.  There can be no more than 500
unique values for each discrete variable and no more than 500 bins if low,
high, and step values are specified.
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Frequency Distribution of AGECLASS  

                             Cumulative

 Value    Freq  Percent    Freq  Percent

    10       2     6.7        2     6.7
    20       1     3.3        3    10.0
    30       5    16.7        8    26.7
    40       8    26.7       16    53.3
    50       7    23.3       23    76.7
    60       3    10.0       26    86.7
    70       4    13.3       30   100.0
Total       30   100.0

Frequency Distribution of STATE  

                                Cumulative

  Value      Freq  Percent    Freq  Percent

Iowa           11    36.7       11    36.7
Nebraska       19    63.3       30   100.0
Total          30   100.0

Frequency Distribution of CONC  Cholesterol Concentration

                                     Cumulative

    Low   High    Freq  Percent    Freq  Percent

   80.0  120.0       1     3.3        1     3.3
  120.0  160.0       4    13.3        5    16.7
  160.0  200.0      10    33.3       15    50.0
  200.0  240.0       6    20.0       21    70.0
  240.0  280.0       6    20.0       27    90.0
  280.0  320.0       0     0.0       27    90.0
  320.0  360.0       3    10.0       30   100.0
Total               30   100.0

Example The data, from Snedecor and Cochran (1980, p. 386), are described at the
beginning of this chapter.  Frequencies are produced for the variable
AGECLASS, which is the ten-year age class for each of the 30 female
subjects, and for STATE, which indicates the state where the subject
resides.  

The dialog box on the preceding page illustrates what variables and options
are selected.  The results are:

The frequencies of each discrete value for a continuous variable, such as
CONC in our example data, are not of interest.  For a continuous variable,
you need to establish intervals that span the range of the data and then count
the number of times data values fall within the bounds of the intervals.  You
do this by entering low, high, and step values in the bottom of the dialog
box.  For example, you can enter the values 80, 360, and 40 for the low,
high, and step values for CONC.  The results are displayed below.  

If a value falls on an interval boundary, the value is counted in the lower of
the two intervals.
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Histogram

Specification

The Histogram procedure produces a bar graph frequency distribution for
discrete or continuous variables.  A histogram can summarize large amounts
of data in a single visual image.  You can have a normal curve
superimposed over the histogram.  This procedure can also produce a graph
of the cumulative frequency distribution of a variable.

Highlight the variables you want to use to make a histogram in the
Variables list and press the right arrow key to move them to the Histogram
Variables list.  You can only produce one histogram at a time.  If you select
more than one variable, the values of the variables will be combined to
produce one plot.  

Select the graph type.  Select Histogram to display the traditional histogram
consisting of vertical bars.  Select Cumulative Distribution to plot a curve
representing cumulative percent.  

Check the Display Normal Curve check box to superimpose a normal curve
over the bars of the histogram.
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You can enter Low, High, and Step values to control the X and Y axis
scales.  You can use this feature to create a meaningful interval width and
interval boundaries.  You can also use it to limit the range of data for the
specified variable in order to eliminate outliers or to concentrate the plot on
a particular range of values.

Example The data are from Snedecor and Cochran (1980, p. 386), described at the
beginning of this chapter.  The dialog box on the preceding page is used to
graph a histogram with normal curve for the variable AGE.  The results are:

Results Menu The results menu for the Histogram procedure includes a Titles procedure
that lets you change the titles that appear on the plot, and a Graph
Preferences procedure that lets you change fonts, colors, and fill patterns. 
Please see Chapter 1 for details.
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Pie Chart

This procedure plots a pie chart.  Pie charts are often used to graphically
display a frequency distribution, but you can also apply the chart to sums or
means.

Specification

First select a Categorical Variable.  The pie chart will have one pie slice for
each value found for this variable.  

If you want to base the size of pie slices on sums or means, then select the
variable containing the data to use to compute the sums or means and move
it to the Summary Variable box.  Don’t select a summary variable if you
want pie slices to represent counts.

Pie slices will be labeled using the values found in the categorical variable. 
These labels can also include the summarized values (counts, sums, or
means), or the percent of the total.  Make your choice by selecting one of
the Display Values radio buttons.

You can enter a value for the Max Number of Slices to limit the number of
pie slices.  If the categorical variable has more levels than the maximum
number you indicate, the extra levels are grouped into one pie slice labeled
“Other”.
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To emphasize a slice, you can explode it (pull it away from the rest of the
circle).  Enter the value for the categorical variable corresponding to the
slice you want to emphasize in the Explode Value box.

The pie slices are normally ordered clockwise by the levels of the
categorical variable.  Check the Sort by Size check box to have the slices
ordered by the size of the slices instead.

Example The data are from Snedecor and Cochran (1980, p. 386), described at the
beginning of this chapter.  The dialog box on the preceding page is used to
graph a pie chart for the variable AGECLASS.  The results are:

The example pie chart above is a simple frequency distribution based on
counts.  Pie charts are also useful for showing how sums are proportioned. 
Suppose you have a data set of transactions for a business that include the
dollar amount of the transaction and the expense category for each
transaction.  By selecting the variable for expense category as your
Categorical Variable,  the variable for the dollar amount as your Summary
Variable, and selecting Sum for the Summary Function, you could create a
pie chart that shows how expenses are distributed among categories.

If the data you want to chart is already tabulated, create a data set with one
case for each pie slice and select Sum for the Summary Function.
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Stem and Leaf Plot

Specification

The Stem and Leaf Plot is a simple but handy way to organize numerical
data.  The digits of the individual values are ordered in a table of “stems”
and “leaves” that resembles a histogram when turned sideways.  Unlike a
histogram, each original measurement can be read from the plot.

Select the variables you want to use to produce the stem and leaf plots from
the Variables list box.  If you select a Grouping Variable, a separate plot is
produced for each value of the grouping variable.  

Extreme values can affect the scale of the stem and leaf plot.  If you see
extreme values causing a scaling problem, check the Trim Outliers check
box.  The extreme values won’t be omitted completely but will be listed
individually outside the scale.

You can enter Low, High, and Step values to control the scale of the plot. 
This is useful when you want to compare two different plots using the same
scale.  Since stem boundaries must fall on whole digits, the step value must
be 1, 2, 5, 10, or multiples of 0.1 or 10 (i.e., 0.1, 0.2, 0.5, 100, 200, etc.).

Example The data are from Snedecor and Cochran (1980, p. 386), described at the
beginning of this chapter.  The dialog box above specifies a plot for AGE,
which is the age of 30 subjects.  The results are given on the next page.
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Stem And Leaf Plot of Age  

   Leaf Digit Unit = 1                  Minimum  18.000
   1  8  Represents 18.                 Median   48.000
                                        Maximum  78.000

          Stem  Leaves

        2    1  89
        3    2  1 
        3    2    
        7    3  0133
        8    3  9   
       13    4  12344
       (3)   4  679  
       14    5  124  
       11    5  6888 
        7    6  3    
        6    6  57   
        4    7  01   
        2    7  68   

30 Cases Included   0 Missing Cases

This plot contains all the information of a histogram.  In addition, it
preserves information about the fine structure of the data.  Each number in
your data is divided into two parts, the stem and the leaf.  The stem
indicates the values of the most significant digits of an observation, while
the leaf gives the least significant digit.  Each digit in the Leaves column is
a separate leaf, so there is one leaf for each case.  

For example, consider the first row of the plot “1  89".  The stem value is 1,
and the leaves are 8 and 9, so you know the digits for the first subject are 1
and 8 and the digits for the second subject are 1 and 9.  You don’t know yet
where to put the decimal point.  That is, the numbers could be 1.8, 1.9, or
perhaps 18, 19, or even 0.018, 0.019, etc.  The message above the body of
the plot “1  8  Represents 18.” is telling you that a stem value of 1 and a leaf
value of 8 represents the number 18.  So the first two values in our example
are 18 and 19.  

The first column in a stem and leaf plot is a cumulative frequency column
that starts at both ends of the data and meets in the middle.  The row that
contains the median of the data is marked with parentheses around the count
of observations for that row.  For rows above the median, the number in the
first column is the number of items in that row plus the number of items in
all the rows above.  Rows below the median are just the opposite.  If the
number of cases is even and the two middle values fall in different rows,
there is no “median row”.

Further details of how to interpret stem and leaf plots can be found in
Velleman and Hoaglin (1981).
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Percentiles

Variable  Cases         10.0       25.0       50.0       75.0       90.0  

AGE          30       21.900     37.500     48.000     59.250     70.900
CONC         30       137.30     180.00     199.00     251.00     329.50

Percentiles

Specification

The Percentile procedure computes the percentiles you specify for a list of
variables.  A percentile is a value such that a specified percent of the data
falls at or below that value.  The median is the 50th percentile.  The lower
and upper quartiles are the 25th and 75th percentiles.

Select the variables for which you want to compute percentiles from the
Variables list and move them to the Percentiles Variables list.  Enter one or
more Percentile values you want computed in the space provided.

Example The data are from Snedecor and Cochran (1980, p. 386), described at the
beginning of this chapter.  The 10th, 25th, 50th (the median), 75th, and 90th
percentiles are computed for the variables AGE and CONC, the age and
cholesterol level for a sample of female subjects.  The analysis is specified
in the dialog box above.  The results are given below.
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Box and Whisker Plot

The Box and Whisker Plot procedure computes box plots that graphically
present measurements of central tendency and variability.  A series of box
plots can be displayed side by side, which can dramatically illustrate
differences between groups.

Specification

First you select the method of specifying the analysis by selecting one of the
Model Specification radio buttons.  The method you choose depends on
how you’ve organized the data you want to plot.  Select the Categorical
method if you want to plot the data of a single variable (the Dependent
Variable) using a second classifying variable that identifies groups (the
Categorical Variable).  This will produce a series of box plots, one for each
level of the classifying variable.

Select the Table method if you want to plot the data of several variables
side by side.  Move the names of the variables you want to plot from the
Variables list to the Table Variables list.  

Data

Restrictions

Data values can’t exceed 99,999.  No more than 30 box plots can be
displayed at once.  The categorical variable can be of any type.  Real values
for the categorical variable will be truncated to whole numbers.
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Example The original data are from Snedecor and Cochran (1980, p. 386), described
at the beginning of this chapter.  The dialog box on the preceding page
specifies box plots for CONC (cholesterol concentration) grouped by
AGECLASS.  The resulting graph is displayed below.

These box plots powerfully illustrate that cholesterol concentration
increases with age.  Each box plot is composed of a box and two whiskers. 
The box encloses the middle half of the data.  The box is bisected by a line
at the value for the median.  The vertical lines at the top and the bottom of
the box are called the whiskers, and they indicate the range of “typical” data
values.  Whiskers always end at the value of an actual data point and can’t
be longer than 1½ times the size of the box.  

Extreme values are displayed as “(” for possible outliers and “O” for
probable outliers.  Possible outliers are values that are outside the box
boundaries by more than 1½ times the size of the box.  Probable outliers are
values that are outside the box boundaries by more than 3 times the size of
the box.  

More precise details of the concepts of middle half, typical values, and
possible and probable outliers can be found in Velleman and Hoaglin
(1981).
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Error Bar Chart

The Error Bar Chart graphically displays the means and standard
deviations (or standard errors) for a list of variables, or for one variable
broken into groups by one or two grouping variables.  The means are
represented using vertical bars or circles, and the standard deviations are
represented using a vertical line centered on the mean.

Specification

First you select the method of specifying the analysis, using either the
Categorical method or the Table method.  Select the Categorical method if
you want to plot the data of a single variable (the Dependent Variable)
divided into groups by one or two classifying variables (the Categorical
Variables).  Select a dependent variable and either one or two categorical
variables.  Using one categorical variable produces a series of bars, one for
each level of the categorical variable.  If you enter two categorical variables,
the first is used to define the X axis and the second is used to further
subdivide the data into sub-bars (see the example chart on the next page).

Select the Table method to plot the data of several variables side by side. 
Highlight the variables you want plotted in the Variables list and press the
right-arrow button to move them to the Table Variables list.
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Next select the Chart Type, either bar chart or line chart.  The bar chart uses
vertical bars to represent the means.  The line chart uses circles to mark the
means, and the circles are connected sequentially with lines.  The line chart
is sometimes used when the grouping variable is ordered in a meaningful
way, such as months of the year.

You have three choices for Error Bar Type: the standard deviation,
standard error of the mean, and no error bars.

Data

Restrictions

When using the table method, you can select up to 20 variables.  When
using the categorical method, the first categorical variable can have up to 20
levels and the second categorical variable, if any, can have up to five levels.

Example The original data are from Snedecor and Cochran (1980, p. 386), described
at the beginning of this chapter.  CONC is the cholesterol concentration,
AGECLASS indicates the age class, and STATE indicates in which of two
states the subject lives.  The three observations associated with age classes
10 and 20 were omitted for this analysis using the Omit/Select Cases
procedure.  The analysis is specified on the preceding page.  The resulting
chart is shown below.
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Cross Tabulation

The Cross Tabulation procedure forms a cross tabulation table (also called
a contingency table) for up to five classifying variables.  The number of
classifying variables determines the dimension of the table.  There’s a table
cell for all unique combinations of values of the classifying variables.  A
cross tabulation table displays the number of cases that fall into each of the
cross-classified table cells.  In statistical terms, such a table represents the
joint frequency distribution of the classifying variables.

Specification

To perform a cross tabulation, you simply select the classifying variables
from the Variables list and press the right-arrow button to move them to the
Cross Tab Variables list.  The last variable becomes the column classifier
and the second-to-last variable becomes the row classifier.  If more than two
variables are selected, the earlier variables become “control” variables.  A
separate table is produced for each unique combination of control variable
values.  These tables are produced in dictionary order; the levels of the
rightmost control variables increment most rapidly.

A cross tabulation table always contains the counts for each cell.  If you
want to have column and row percentages reported for each cell as well,
check the Report Column Percent and Report Row Percent check boxes.

Data

Restrictions

There can be up to five classifying variables.  Each classifying variable can
have up to 500 levels.  Classifying variables can have any data type (real,
integer, date, and string).  Numerical values of classifying variables must be
whole numbers no larger than 99,999.  Strings are truncated to ten
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Cross Tabulation of AGECLASS by CONCLASS

                           CONCLASS

AGECLASS     80    120    160    200    240    320 

         +------+------+------+------+------+------+
   10    |    0 |    1 |    1 |    0 |    0 |    0 |     2
         +------+------+------+------+------+------+
   20    |    0 |    0 |    1 |    0 |    0 |    0 |     1
         +------+------+------+------+------+------+
   30    |    0 |    2 |    2 |    1 |    0 |    0 |     5
         +------+------+------+------+------+------+
   40    |    1 |    1 |    4 |    2 |    0 |    0 |     8
         +------+------+------+------+------+------+
   50    |    0 |    0 |    2 |    2 |    3 |    0 |     7
         +------+------+------+------+------+------+
   60    |    0 |    0 |    0 |    0 |    1 |    2 |     3
         +------+------+------+------+------+------+
   70    |    0 |    0 |    0 |    1 |    2 |    1 |     4
         +------+------+------+------+------+------+
              1      4     10      6      6      3      30

Cases Included 30    Missing Cases 0

characters.

Example The original data are from Snedecor and Cochran (1980, p. 386), described
in the beginning of this chapter.  AGECLASS indicates the age class a
person was in (for example, AGECLASS = 60 means the person was in the
60 to 69 year age class).  CONCLASS indicates the cholesterol
concentration class a person was in (for example, CONCLASS = 160 means
the person’s cholesterol level was in the 160 to 199 mg/100 ml range).

The dialog box on the preceding page illustrates how to request cross
tabulation of AGECLASS by CONCLASS.  The results are displayed
below:

Note the diagonal pattern of nonzero cells in the table above.  This suggests
a relationship between age and cholesterol level.
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Scatter Plot

The Scatter Plot procedure is used to produce a bivariate scatter diagram. 
Pairs of numbers are plotted as points on a X-Y graph.  You can also have a
fitted regression line displayed.

When investigating possible relationships between variables, plotting the
data should be one of your first steps.  Visual inspection of the data is
invaluable and often reveals features of the data that would be overlooked if
you proceeded directly with your statistical analyses.

Specification

Select an X Axis Variable and a Y Axis Variable.  The arrow buttons to the
left of each list are used to select and deselect variables for the respective
lists.  You can select additional variable name pairs.  All pairs are displayed
on the same graph using different symbols.  

You can enter low, high, and step values to control the scales of either the X
Axis or the Y Axis.  If you enter low and high values for either the X or the
Y axis, only points that fall between these values will be plotted.  This
option is useful for eliminating outliers from the plot or zooming in on a
particular portion of the plot.

Check the Display Regression Line box to have a fitted regression drawn
through the points on the scatter plot.
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Example The data are from Snedecor and Cochran (1980, p. 386), described at the
beginning of this chapter.  The dialog box on the preceding page is used to
request a scatter plot for CONC vs.  AGE, the blood cholesterol level and
age of 30 female subjects.  The results are displayed below.

The fitted linear regression line in the graph above makes it easier to see the
linear relationship between age and cholesterol concentration.  A fitted line
can also be useful as a reference line to spot nonlinear relationships
between two variables.

Results Menu The results menu for the Scatter Plot procedure includes a Titles procedure
that lets you change the titles that appear on the plot, and a Graph
Preferences procedure that lets you change plot symbols and colors.  Please
see Chapter 1 for details.
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Breakdown

Breakdown computes summary statistics for a variable broken into groups
and subgroups in a nested fashion.  The dependent variable can be classified
by up to five categorical variables.  The summary statistics are displayed for
all levels of nesting.  You can select the statistics to be reported from the
following list: number of cases, sum, mean, standard deviation, variance,
and standard error of the mean.  

Specification

Select the variable you want to compute the summary statistics for and
move it to the Dependent Variable box.  Then select up to five Categorical
Variables that will be used to “break down” the data into groups.  The order
in which the categorical variables are selected determines the order of
nesting, with the value of the last variable changing most rapidly.

Check the Statistics to Report boxes for the statistics you want to include in
the report.  Select a report format.  An example of the List Format is
displayed on the next page.  The Crosstabs Format presents the same
information in two-dimensional tables.

Data

Restrictions

There can be up to five categorical variables.  The categorical variables can
be of any data type.  Real values will be truncated to whole numbers and
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Breakdown for CONC  Cholesterol Concentration

Variable    Level        N        Sum       Mean         SD

  AGECLASS   30          2        383     191.50     13.435
  AGECLASS   40          3        414     138.00     37.510
  AGECLASS   50          3        676     225.33     35.076
  AGECLASS   60          1        249     249.00
  AGECLASS   70          2        563     281.50     81.317
 STATE      Iowa        11       2285     207.73     63.795
  AGECLASS   10          2        326     163.00     36.770
  AGECLASS   20          1        191     191.00
  AGECLASS   30          3        476     158.67     18.502
  AGECLASS   40          5        996     199.20     19.791
  AGECLASS   50          4        941     235.25     30.314
  AGECLASS   60          2        693     346.50     13.435
  AGECLASS   70          2        502     251.00     14.142
 STATE      Nebraska    19       4125     217.11     58.796
Overall                 30       6410     213.67     59.751

Cases Included 30    Missing Cases 0

must be no larger than 99,999.  Strings will be truncated to ten characters.  

Example The original data are from Snedecor and Cochran (1980, p. 386), described
at the beginning of this chapter.  The dependent variable CONC is the
cholesterol concentration of 30 female subjects.  The two categorical
variables used are STATE and AGECLASS.  For example, suppose you’re
interested in the cholesterol concentration means by states as well as the
age-specific means within states.  The variables selected  in the dialog box
on the preceding page specify that AGECLASS be nested within STATE. 
The results are presented below.

The indentations of the first two columns (the variable names and their
values) depict the nesting structure.  Any variable X indented with respect
to another variable Z means the statistics for the levels of X are nested
within the levels of Z.  For example, AGECLASS is nested within STATE. 
The order of nesting is consistent with the order in which the classifying
variables are listed in the Categorical Variables list box.

Note that the outer levels of nesting summarize the inner levels.  In the
example above, the line labeled “Iowa” summarizes the data for the five age
classes listed above it.
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5

One, Two, & Multi-Sample Tests

Statistix offers a number of procedures to test hypotheses about the central
values of the population distributions from which the samples are drawn. 
These procedures are often referred to as tests of location.  Several of these
tests are parametric and require the assumption that the data are normally
distributed.  Nonparametric tests are provided for situations where the
assumption of normality is not appropriate.  When their assumptions are
appropriate, parametric tests are generally more powerful than their
nonparametric equivalents, although nonparametric tests often compare
quite well in performance.  The parametric versions test hypotheses
concerning the group means.  The nonparametric procedures test central
value hypotheses based on measures other than the mean.
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The One-Sample T Test is used to test hypotheses about sample means.

The Paired T Test is a parametric test used to test for differences between
means of two groups when the samples are made in pairs.

The Sign Test and Wilcoxon Signed Rank Test are nonparametric
alternatives to the Paired T Test.

The Two-Sample T Test is a parametric test that tests for a difference in
the means of two groups when the samples are drawn independently from
two normally distributed populations.  

The Wilcoxon Rank Sum Test and Median Test are nonparametric
alternatives to the Two-sample T Test.

The One-Way AOV is a multi-sample test that tests for differences among
the means of several groups.  

The Kruskal-Wallis One-Way AOV is a nonparametric alternative to the
One-Way AOV.

The Friedman Two-Way AOV is a nonparametric alternative to the two-
way analysis of variance.  The General AOV/AOCV procedure, which is
discussed in Chapter 6, performs parametric tests with two or more
classifying attributes.

The Proportion Test is used to perform one- and two-sample hypothesis
tests and compute confidence intervals for proportions.

Background on the parametric tests can be found in Snedecor and Cochran
(1980).  Hollander and Wolfe (1973), Lehmann (1975), and Siegel and
Castellan (1988) are good references for the nonparametric procedures.  

126 Statistix User's Manual



One-Sample T Test

Null Hypothesis: Mu =  200
Alternative Hyp: Mu <> 200

                                95% Conf Interval

Variable       Mean        SE     Lower     Upper       T    DF        P

CALORIES     205.90    3.3282    198.37    213.43    1.77     9   0.1100

One-Sample T Test

The One-Sample T Test is used to test whether the mean of a sample
drawn from a normal population differs from a hypothesized value.

Specification

Select the variable from the Variables list that contains the sample values. 
Double-clicking a variable will move it to the Sample Variable box.  Enter
a value for the null hypothesis.  Select the two-sided alternative hypothesis
“not equal”, or a one-sided alternative “less than” or “greater than”.

Example Ten frozen dinners labeled “200 calories” were randomly selected from a
day’s production at a factory.  The caloric content of the dinners were
measured at 198, 203, 223, 196, 202, 189, 208, 215, 218, 207.  The dialog
box above illustrates how to test the hypothesis that the average number of
calories in a dinner is 200.  The results are: 

The report includes the mean, standard error, confidence interval, t-test, and
the p-value.  Since the p-value of 0.1100 is larger than the typical value of
0.05 for the rejection level, the null hypothesis is not rejected in this
example.
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CASE   VIRUS1  VIRUS2

  1      31      18

  2      20      17

  3      18      14

  4      17      11

  5       9      10

  6       8       7

  7      10       5

  8       7       6

Paired T Test

The Paired T Test, a parametric procedure, is useful for testing whether the
means of two groups are different, where the samples were drawn in pairs. 
The test is actually testing whether the mean of the differences of the pairs
is different from zero, or from some other hypothesized value.

Specification

Select the two variables that contain the paired samples.  Highlight the
variables you want to select in the Variables list, then press the right-arrow
button to move them to the Sample Variables list box.  The typical Null
Hypothesis is that the difference is zero, but you can enter a different value. 
You can also select an Alternative Hypothesis: “not equal”, “less than”, or
“greater than”.

Example The data for this example (Snedecor and Cochran, 1980, p. 87) concern the
number of lesions produced on a tobacco leaf by the application of two
different viral preparations.  The halves of a leaf constitute a pair.  The data
for the first preparation are in variable VIRUS1, and that for the second
preparation are in VIRUS2 (see Sample Data\tobacco.sx).
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Paired T Test for VIRUS1 - VIRUS2

Null Hypothesis: difference =  0
Alternative Hyp: difference <> 0

Mean            4.0000
Std Error       1.5236
Mean - H0       4.0000
Lower 95% CI    0.3972
Upper 95% CI    7.6028
T                 2.63
DF                   7
P               0.0341

Cases Included 8    Missing Cases 0

The analysis is specified on the preceding page.  The results are presented
below.

The null hypothesis being examined is that the mean of the differences is
zero.  If the assumption of normality is appropriate, the small p-value
(0.0341) suggests that the mean of the differences is not zero, i.e., the two
different viral preparations do cause lesions at different rates.  (The
Shapiro-Wilk Test and Normal Probability Plot can be used to examine
the assumption of normality.)  The p-value is for a two-tailed test; halving it
produces a one-tailed p-value.

It’s not appropriate to use this test if the data are not paired.  We’ll call the
unit from which the two members of the pair were drawn a block.  For
example, the blocks may be individuals and the two members of the data
pair are reaction times before and after ingestion of some test medication. 
The advantage of a paired test is that it removes variation in the data due to
blocks; the data used for the test are the pair differences within the blocks. 
The “noise” in the data due to the fact that some individuals have naturally
faster or slower reaction times regardless of the medication would thus be
eliminated.  (The paired t test is a special case of a randomized block design
analysis of variance.)  This analysis is not very efficient if the pair members
are not correlated within blocks; in this case a Two-Sample T Test should
be considered instead.  Snedecor and Cochran (1980, p. 99-102) give further
detail on paired versus independent sampling.
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Sign Test

Specification

The Sign Test is a nonparametric alternative to the Paired T Test.  It
requires virtually no assumptions about the paired samples other than that
they are random and independent.  On the negative side, it’s not as powerful
as the Paired T Test or Wilcoxon Signed Rank Test.  However, it’s
especially useful for situations where quantitative measures are difficult to
obtain but where a member of the pair can be judged “greater than” or “less
than” the other member of the pair.

As with other paired t tests, it assumes that you have two groups and that
you have drawn your samples in pairs.  The only information in the data
which the sign test uses is whether, within a pair, the item from the first
group was greater than (“+”) or less than (“-”) the item in the second group. 
If there is no consistent difference between the groups, there should be an
equal number of “+”s and “-”s in the data except for random variation.

Select the two variables that contain the paired samples.  Highlight the
variables in the Variables list, then press the right-arrow button to move
them to the Sample Variables list box.  You can also move a variable by
double-clicking on the variable name.

Example The data for this example (Snedecor and Cochran, 1980, p. 87) concern the
number of lesions produced on a tobacco leaf by the application of two
different viral preparations.  The halves of a leaf constitute a pair.  The data
for the first preparation are in variable VIRUS1, and that for the second
preparation are in VIRUS2 (see Sample Data\tobacco.sx).
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CASE   VIRUS1  VIRUS2

  1      31      18

  2      20      17

  3      18      14

  4      17      11

  5       9      10

  6       8       7

  7      10       5

  8       7       6

Sign Test for VIRUS1 - VIRUS2

Number of Negative Differences              1
Number of Positive Differences              7
Number of Zero Differences (ignored)        0

Probability of a result as or more
extreme than observed (one-tailed p-value)  0.0352

A value is counted as a zero if its 
absolute value is less than 0.00001

Cases Included 8    Missing Cases 0

The analysis is specified on the preceding page.  The results are displayed
below.

The null hypothesis tested by the sign test is that the median of the
differences is zero.  The calculated probability is the binomial probability of
observing as few or fewer of the less abundant sign, given that an individual
difference is equally likely to be of either sign.

For the virus example, the calculated probability is the probability of
observing one or fewer negative differences in a random sample of eight. 
This is a one-tailed probability; doubling it produces the correct two-tailed
value.  So the two-tailed p-value for the example is 0.0704, somewhat larger
than the p-value observed with the Paired T Test.

Computation-

al Notes

The probability is calculated using the same routine as in the binomial
function in Probability Functions.  The parameter P is set to 0.5.
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Wilcoxon Signed Rank Test

The Wilcoxon Signed Rank Test is a nonparametric alternative to the
Paired T Test.  It’s generally more powerful than the Sign Test.  As with
other paired tests, it assumes that you have two groups and that you have
drawn your sample in pairs.  Each pair contains an item from the first group
and an item from the second group.  This procedure tests the hypothesis that
the frequency distributions for the two groups are identical.  Exact p-values
are computed for small sample sizes.

Specification Select the two variables containing the paired samples.  Highlight the
variables in the Variables list, then press the right-arrow button to move
them to the Sample Variables list box.

Example The data for this example (Snedecor and Cochran, 1980, p. 87) concern the
number of lesions produced on a tobacco leaf by the application of two dif-
ferent viral preparations.  The halves of a leaf constitute a pair.  The data for
the first preparation are in variable VIRUS1, and that for the second
preparation are in VIRUS2.  See Paired T Test on page 128 for the data
listing, or open the data file Sample Data\tobacco.sx.

The differences are first ranked by absolute value.  Tied values are given a
mean rank (Hollander and Wolfe 1973).  Differences are considered to be
tied if they are within 0.00001 of one another.  The ranks are given the same
signs that the original differences had.  The negative and positive signed
ranks are then summed separately.
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Wilcoxon Signed Rank Test for VIRUS1 - VIRUS2

Sum of Negative Ranks                              -2.0000
Sum of Positive Ranks                               34.000

Exact probability of a result as or more extreme
than the observed ranks (one-tailed p-value)        0.0117

Normal Approximation with Continuity Correction      2.170
Two-tailed P-value for Normal Approximation         0.0300

Total number of values that were tied      3
Number of zero differences dropped         0
Max. diff. allowed between ties      0.00001

Cases Included 8    Missing Cases 0

Suppose the frequency distributions for groups one and two were the same. 
The frequency distribution of the differences of the pairs would then be
symmetrical and have a median of zero.  In this instance, the absolute values
of the sums of negative and positive signed ranks would be expected to be
“similar”.  The signed rank test tests the null hypothesis that the median of
the differences equals zero.

The exact p-values for the Wilcoxon signed rank test are computed for
small to moderate sample sizes (20 or fewer cases).  The exact one-tailed p-
value is computed; doubling this yields the exact two-tailed p-value.  When
ties are found to be present, the “exact probability” is no longer exact but
will usually be a good approximation.  When sample sizes are moderate to
large, the normal approximation statistic gives reliable results.  The p-value
for the normal approximation is two-tailed.  The normal approximation
includes a correction for continuity; its use is described in Snedecor and
Cochran (1980, p. 142).

In the example, the exact p-value is 0.0117, which when doubled gives the
two-tailed value of 0.0234.  This is fairly close to the p-value of 0.0300
using the normal approximation.  As with the t test, these results suggest
that the preparations do produce lesions at different rates.  While the paired
t test is a more powerful test than the signed rank test, the difference in
power is often not great.  The signed rank test is a popular alternative
because it requires much less restrictive assumptions about the data.

The exact p-value routine is based on the p-value routine for the Wilcoxon
Rank Sum Test.  It exploits the fact that the null distribution of the signed
rank statistic can be factored as a product of a binomial distribution and the
null distribution of the rank sum statistic (Bickel and Doksum 1977).
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Two-Sample T Test

This procedure computes two-sample t tests, which test for differences
between the means of two independent samples.  It’s applicable in
situations where samples are drawn independently from two normally
distributed groups.  Two t tests are computed; one assumes equal group
variances, and the other assumes different group variances.  A test for
equality of variances is also performed.

Specification The analysis can be specified in one of two ways, depending on how the
data are stored.  If the data from both groups are entered into a single
variable, and a second categorical variable is used to identify the two
groups, use the Categorical method, as illustrated below.  Move the
variable containing the observed data into the Dependent Variable box. 
Move the variable that identifies the two groups into the Categorical
Variable box.  To move a variable, highlight the variable in the Variables
box, then press the right-arrow button next to the box to which you want to
move it.  When using the categorical method, you can specify more than
one dependent variable, in which case a separate report is displayed for
each variable.

If the two groups are entered into Statistix as two variables, one for each
group, use the Table method as illustrated on page 137.  Select the two
variables and move them to the Table Variables box.  
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CASE    CONC   METHOD

  1      25       1

  2      24       1

  3      25       1

  4      26       1

  5      23       2

  6      18       2

  7      22       2

  8      28       2

  9      17       2

 10      25       2

 11      19       2

 12      16       2

Typically the null hypothesis is that the means are equal, or that the
difference is zero.  You can enter a different value for the null hypothesis. 
You can also select the alternative hypothesis: the two-sided alternative
“not equal”, or a one-sided alternative “less than” or “greater than”.

Data

Restrictions

The grouping variable used with the categorical method can be of any data
type (i.e., real, integer, date, or string).  Real values are truncated to whole
numbers and must be no larger than 99,999.  Strings are truncated to ten
characters.

Example The data for this example come from Snedecor and Cochran (1980).  The
goal is to compare the results of a standard, but slow, chemical analysis
procedure with a quicker, but potentially less precise, procedure.  The
variable CONC is used to store the chemical concentrations determined by
both methods.  The variable METHOD is used to identify the method used
(1 = standard, 2 = quick) to determine the concentration.

These data are available in the file Sample Data\concentrations.sx. The
analysis is specified on the preceding page.  The results are displayed on the
next page.

Summary statistics for the two groups are given first, including the group
means, sample sizes, standard deviations, and standard errors.  The t-
statistics and associated information are given next.  The t test labeled
“Equal Variances” is testing the null hypothesis that means for the two
groups are equal given that the two groups have the same variances.  The t
test labeled “Unequal Variances” tests the same null hypothesis except that
it does not require the assumption that the variances of the two groups are
equal.  A discussion of such tests is given in Snedecor and Cochran (1980,
p. 96-98).  Note that the degrees of freedom for unequal variances are
expressed as a decimal number.  It’s computed using Satterthwaite’s

Chapter 5, One, Two, & Multi-Sample Tests 135



Two-Sample T Tests for CONC by METHOD

METHOD           Mean      N         SD         SE

Standard       25.000      4     0.8165     0.4082
Quick          21.000      8     4.2088     1.4880
Difference     4.0000

Null Hypothesis: difference =  0
Alternative Hyp: difference <> 0

                                             95% CI for Difference

Assumption               T      DF        P       Lower      Upper

Equal Variances       1.84      10   0.0956     -0.8433     8.8433
Unequal Variances     2.59     8.0   0.0320      0.4408     7.5592

Test for Equality          F       DF          P

      of Variances     26.57      7,3     0.0106

Cases Included 12    Missing Cases 0

CASE   STANDARD   QUICK

  1       25        23

  2       24        18

  3       25        22

  4       26        28

  5        M        17

  6        M        25

  7        M        19

  8        M        16

approximation, described in Snedecor and Cochran.  An F test for the
equality of the group variances is given after the t tests.

Snedecor and Cochran use the above example to illustrate how unequal
variances can influence the analysis.  Evidence for a difference between two
chemical analyses is considerably weaker when equal variances are
assumed (p=0.0956) than when unequal variances are assumed (p=0.0320). 
When in doubt, it’s safer to assume the variances are unequal.  In our
example, the F test for equality of variances lends strong support for
assuming the variances are unequal (p=0.0106).

These t tests, as well as the F-test for equality of variances, are based on the
assumption that the data are normally distributed.  The Shapiro-Wilk Test
and Normal Probability Plot are useful for examining this assumption. 
You should consider the Median Test or the Wilcoxon Rank Sum Test if
non-normality is a problem.

To illustrate the Table method of model specification, suppose that the data
from the two methods were entered as two separate variables.

To specify the analysis, first select Table from the Model Specification
radio buttons.  Then move the two variable names STANDARD and
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QUICK from the Variables list to the Table Variables list box.  The dialog
box below illustrates this method.

Wilcoxon Rank Sum Test

Statistix computes the Wilcoxon Rank Sum Test, a nonparametric
procedure that tests for differences in the central values of samples from
two independent samples.  This test can be performed with either of two
statistics—the Wilcoxon rank sum statistic or the Mann-Whitney U statistic. 
Statistix computes both statistics.  Both of these statistics are
mathematically equivalent and always lead to identical results.  Exact p-
values are given for small sample sizes.  This test is often almost as
powerful as the Two-Sample T Test, and is usually more powerful than the
Median Test.
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CASE    CONC   METHOD

  1      25       1

  2      24       1

  3      25       1

  4      26       1

  5      23       2

  6      18       2

  7      22       2

  8      28       2

  9      17       2

 10      25       2

 11      19       2

 12      16       2

Specification The analysis can be specified in one of two ways, depending on how the
data are stored.  If the two groups are entered into Statistix as two variables,
use the Table method and move the two variables to the Table Variables
list box.  

If the data from both groups are entered into a single variable and a second
categorical variable is used to identify the two groups, use the Categorical
method as illustrated in the dialog box below.  Move the variable containing
the observed data into the Dependent Variable box, and the variable that
identifies the two groups into the Categorical Variable box.

Example The data for this example come from Snedecor and Cochran (1980).  The
variable CONC is used to store the chemical concentrations determined by
two methods.  The variable METHOD is used to identify the method used
(1 = standard, 2 = quick) to determine the concentration.  
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Wilcoxon Rank Sum Test for CONC by METHOD

METHOD     Rank Sum      N     U Stat  Mean Rank

Standard     36.000      4     26.000        9.0
Quick        42.000      8     6.0000        5.3
Total        78.000     12

Exact Permutation Test Two-tailed P-value    0.2869

Normal Approximation with Corrections for Continuity and Ties   1.625
Two-tailed P-value for Normal Approximation                    0.1042

Total number of values that were tied         3
Maximum difference allowed between ties 0.00001

Cases Included 12    Missing Cases 0

The analysis is specified on the preceding page.  The results are shown
below.

 
All the data are combined and converted to ranks.  Tied scores are assigned
mean ranks (Hollander and Wolfe 1973).  Values are considered to be tied
if they are within 0.00001 of one another.  The ranks for each group are
then summed to get the rank sum statistic for each group.  If the
distributions for the two groups are the same, the average ranks should be
“similar” for each group.  The null hypothesis being tested by the rank sum
test is that the distributions for the two groups are the same.  Rejecting this
hypothesis usually leads to the conclusion that the central values for the two
groups differ, although strictly you can only conclude that the distributions
for the two groups differ in some way (Bradley 1968).

The Mann-Whitney U statistic corresponding to the rank sum is also given. 
When sample sizes are small to moderate, exact p-values are calculated and
displayed.  (Exact p-values are computed for total sample sizes of 26 or
smaller.)  For moderate to large samples, the traditional normal
approximation statistic and associated two-tailed p-value is displayed.

The exact p-value and normal approximation p-value are quite different in
this example. The exact p-value, when reported, should always be used in
preference to the normal approximation.  The exact p-value of 0.5859 does
not provide any evidence that the two chemical techniques are different.

Computation-

al Notes

The algorithm for the exact p-value is given in Manly (1991).  The
corrections for continuity and ties for the normal approximation are
given in Siegel and Castellan (1988).
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Median Test

Specification

The Median Test is a nonparametric two-sample test.  It tests the
hypothesis that the medians for the two groups from which the samples
were drawn are equal.

The analysis can be specified in one of two ways, depending on how the
data are stored.  If the data from both groups are entered into a single
variable and a second categorical variable is used to identify the two groups,
use the Categorical method.  Move the variable containing the observed
data into the Dependent Variable box, and the variable that identifies the
two groups into the Categorical Variable box.

If the two groups are entered into Statistix as two variables, select the Table
method as illustrated in the dialog box below.  Move the two variables to
the Table Variables list box.  

Data

Restrictions

The chi-square value is not computed for sample sizes less than ten.  It is
recommended that you use the Two By Two procedure to compute Fisher’s
exact method in such cases.
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CASE   STANDARD   QUICK

  1       25        23

  2       24        18

  3       25        22

  4       26        28

  5        M        17

  6        M        25

  7        M        19

  8        M        16

Median Test for QUICK - STANDARD

                   QUICK    STANDARD       Total

Above Median           2           4           6
Below Median           6           0           6
Total                  8           4          12
Ties with Median       0           0           0

Median Value      23.500

Chi-Square  6.00   DF 1   P-value 0.0143

Max. diff. allowed between a tie  0.00001

Cases Included 12    Missing Cases 4

Example The data for this example come from Snedecor and Cochran (1980).  The
goal is to compare the results of a standard, but slow, chemical analysis
procedure with a quicker, but potentially less precise, procedure.  The
variable STANDARD stores the chemical concentrations determined using
the standard method, and the variable QUICK stores the concentrations
determined using the quicker method.  

The analysis is specified on the preceding page.  The results are as follows:

The first step is to find the median for all of the data, which for our example
was 23.5.  The number of values above and below the median in each sam-
ple is tallied, and the two by two table displayed above is created.  The
number of ties with the median is also displayed, but this information isn’t
used in the calculations.  A value is considered to be tied with the median if
it differs by no more than 0.00001.

If the medians for the two groups are equal, we would expect “similar”
numbers of values within each group to fall above and below the median. 
The null hypothesis being tested is that the medians for the two groups are
equal.  The test amounts to a typical chi-square test for independence or
heterogeneity, performed on the two by two table.

The chi-square value in the example is 6.00, which results in a p-value of
0.0143.  This supports the idea that the chemical analysis procedures are
different.
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CASE      FAT1      FAT2      FAT3      FAT4

   1        64        78        75        55

   2        72        91        93        66

   3        68        97        78        49

   4        77        82        71        64

   5        56        85        63        70

   6        95        77        76        68

One-Way AOV

Specification

Data

Restrictions

Example

This procedure performs a one-way analysis of variance (Snedecor and
Cochran, Chapter 12).  The One-Way AOV provides statistics for both the
fixed effects (Type I) model and the random effects (Type II) model.  It also
tests for equality of variances between levels, and there are options to
perform multiple comparisons of means, contrasts, residual plots, and save
fitted values and residuals.  The one-way AOV is equivalent to the
Completely Randomized Design discussed in Chapter 7.

To use the One-Way AOV procedure, you can organize your data in one of
two ways.  In the Table method, you create one variable for each of the
treatments, then enter the responses observed for each treatment in its own
variable.  Your second option is to create a single dependent variable and
enter all of the responses observed for all of the treatments.  Then create a
second variable with categorical values (e.g., 1, 2, 3 ...) that represent the
treatments.  This is called the Categorical method.  Both of these methods
are illustrated below.

Sample sizes within treatment levels can be unequal.  The maximum
number of treatment levels is 500.  The treatment variable used with the
categorical method can be of any data type.  Real values are truncated to
whole numbers and must be no larger than 99,999.  Strings are truncated to
ten characters.

The example below is from Snedecor and Cochran (1980, p. 216).  The
grams of fat absorbed by batches of doughnuts was measured using four
types of fat.  The fat absorbed is the response, the fat types are the
treatments.  To illustrate the Table method of model specification first,
suppose we entered the responses using four variables, FAT1, FAT2, FAT3,
and FAT4, each representing one of the four treatments (see data file
Sample Data\doughnuts.sx).

142 Statistix User's Manual



One-Way AOV for: FAT1 FAT2 FAT3 FAT4

Source    DF        SS        MS       F        P

Between    3   1636.50   545.500    5.41   0.0069
Within    20   2018.00   100.900
Total     23   3654.50

Grand Mean 73.750    CV 13.62
                                     Chi-Sq   DF        P
Bartlett's Test of Equal Variances     1.75    3   0.6258
Cochran's Q                 0.4410
Largets Var / Smallest Var  2.9470

Component of variance for between groups   74.1000
Effective cell size                            6.0

Variable    Mean

FAT1      72.000
FAT2      85.000
FAT3      76.000
FAT4      62.000
Observations per Mean            6
Standard Error of a Mean    2.0250
Std Error (Diff of 2 Means) 2.4082

The model is specified in the dialog box below.  The Table method was
selected and the four variables moved to the Table Variables box.  

The results are displayed below.

A standard analysis of variance table is displayed first.  Note that the F test
suggests a substantial between-groups (fat types) effect, with a p-value of
0.0069.  The F test assumes that the within-group variances are the same for
all groups.  Bartlett’s test for equality of variances tests this assumption; it
is shown below the analysis of variance table.  The p-value of 0.6258
doesn’t suggest that the variances are unequal.  Bartlett’s test is described in
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CASE   FATABSORB   FATTYPE

  1        64         1

  2        72         1

  3        68         1

  4        77         1

  5        56         1

  6        95         1

  7        78         2

  8        91         2

  9        97         2

 10        82         2

 11        85         2

 12        77         2

 13        75         3

 14        93         3

 15        78         3

 16        71         3

 17        63         3

 18        76         3

 19        55         4

 20        66         4

 21        49         4

 22        64         4

 23        70         4

 24        68         4

Snedecor and Cochran (1980, p. 252).  Another test of equality of variances,
Cochran’s Q, is given below Bartlett’s test.  Cochran’s Q statistic is the
ratio of the largest within-group variance over the sum of all within-group
variances.  The ratio of the largest within-group variance over the smallest
has also been a popular test for equal variances and is displayed under
Cochran’s Q; tables are given in Pearson and Hartley (1954).

A fixed-effects model (Type I) is appropriate for these data.  If a random-
effects model were appropriate (Type II), the component of variance for
between groups may be of interest (see Snedecor and Cochran, chap. 13). 
The between-groups variance component and effective cell sample size are
displayed below the equality of variance tests.  The computation of
effective cell size is described on page 246 of Snedecor and Cochran.

The bottom portion of the report lists a table of within-group means, sample
sizes, and standard errors of the means.  The standard error of the difference
of two means is reported when the sample sizes are equal.

We’ll use the same analysis to illustrate the Categorical method of model
specification.  We now create two variables, a dependent variable
FATABSORB and the treatment variable FATTYPE (see data file Sample
Data\doughnuts.sx).

The model is specified in the dialog on the next page.
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One-Way AOV

Results Menu

Once the one-way AOV is computed and displayed, a Results pull-down
menu appears in the main menu at the top of the Statistix window.  Click on
the Results menu to display the One-Way AOV results menu:

Select AOV Table to have the AOV table and means displayed again. 
Select Options to display the original One-Way AOV dialog box you used
to specify the model.  You can change the details of the model you specified
and recompute the analysis.  The remaining procedures are discussed briefly
below; see Chapter 7 for a thorough discussion.

Multiple

Comparisons

The Multiple Comparisons procedures are used to compare the means of
the different groups.  Other names for these procedures are mean separation
tests, multiple range tests, and tests for homogeneity of means.  The

Chapter 5, One, Two, & Multi-Sample Tests 145



multiple comparisons tests performed by Statistix are divided into three
categories: all-pairwise comparisons, comparisons with a control, and
comparisons with the best.  See Chapter 7 for a complete discussion of
these procedures and examples of each.

Plots The Plots submenu offers three plots.  The Means Plot produces a line-plot
or a bar-chart of the means for each group.  See Chapter 7 for an example.

The Normal Probability Plot plots the residuals against the rankits.  Plots
for normal data form a straight line.  The Shapiro-Wilk statistic for
normality is also reported on the plot.  See Chapter 9 for details.

The Resids By Fitted Values plot is useful for examining whether the
variances are equal among the groups.  If the order of the groups is mean-
ingful, then systematic departures from equality can be seen in the plot.

The Titles procedure is used to changes the titles of the plot displayed.  The
Graph Preferences procedure is used to change details of the plot, such as
font and symbol type.  See Chapter 1 for details.

Contrasts This procedure lets you compute a test for any linear contrast of the group
means.  Linear contrasts are linear combinations of the means, and they’re
value for examining the “fine structure” of the data after the overall F test
indicates that the treatment effect is significant.  The test computes the
contrast value, sums of squares for the contrast, Scheffe’s F, and Student’s
t-statistic.  See Chapter 7 for details and an example.

Polynomial

Contrasts

This procedure computes the polynomial decomposition of the treatment
sums of squares.  This is useful for determining the existence and nature of
trends (i.e., linear, quadratic, etc.) in the treatment level means.  See
Chapter 7 for details and an example.

Save Residuals The Save Residuals procedure is used to save the fitted values and residuals
in new or existing variables for later analysis.  This option is only available
if you use the Categorical method of model specification.  Simply enter
variable names in the spaces provided for fitted values and residuals.  The
fitted value for an observation in a one-way AOV is the class mean.  The
residuals are computed as the observed value minus the fitted value.
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CASE      FAT1      FAT2      FAT3      FAT4

   1        64        78        75        55

   2        72        91        93        66

   3        68        97        78        49

   4        77        82        71        64

   5        56        85        63        70

   6        95        77        76        68

Kruskal-Wallis One-Way AOV

The Kruskal-Wallis One-Way AOV procedure performs a nonparametric
one-way analysis of variance.  The Kruskal-Wallis statistic is computed as
are the results of a parametric one-way analysis of variance applied to the
ranks.

Specification To use the Kruskal-Wallis One-Way AOV procedure, you can organize
your data in one of two ways.  The Table method is where you enter the
responses observed for each of the treatments in its own variable.  The
Categorical method is where you enter all of the observed responses in a
single dependent variable and enter the treatment levels in a second
grouping variable.  Both the Table method and the Categorical method are
illustrated in the example below.

Data

Restrictions

Sample sizes within treatments can be unequal.  The maximum number of
treatment levels is 500.

Example The example data are from Snedecor and Cochran (1980, p. 216) and are
also used as example data for the One-Way AOV procedure.  The grams of
fat absorbed by batches of doughnuts were measured using four types of fat. 
The fat types are the treatments, and the fat absorbed is the response.  We’ll
illustrate the Table method of model specification first.  Suppose we enter
the responses using four variables—FAT1, FAT2, FAT3, and FAT4.  Each
variable represents one of the four treatments.

The model is specified in the dialog box on the next page.
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The Table method was selected and the four variables moved to the Table
Variables box.  The results are displayed on the next page.

The Kruskal-Wallis test is a generalization of the Wilcoxon  rank sum test. 
The data are first ranked irrespective of group.  Tied values are assigned
their average rank (Hollander and Wolfe 1973).  Values are assumed to be
tied if they are within 0.00001 of one another.  If each of the groups had
similar distributions, the mean ranks for all groups would be expected to be
“similar”.  The null hypothesis being tested is that each of the groups has
the same distribution.  Strictly speaking, if the null hypothesis is rejected,
the alternative is that the distributions for the groups differ, although in
practice it’s typical to assume that the differences are due to differences in
the central values of the groups.
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Kruskal-Wallis One-Way Nonparametric AOV

             Mean  Sample

Variable     Rank    Size

FAT1         11.3       6
FAT2         19.5       6
FAT3         13.6       6
FAT4          5.7       6
Total        12.5      24

Kruskal-Wallis Statistic                     11.8322
P-Value, Using Chi-Squared Approximation      0.0080

Parametric AOV Applied to Ranks

Source    DF        SS        MS       F        P

Between    3    590.58   196.861    7.06   0.0020
Within    20    557.42    27.871
Total     23   1148.00

Total number of values that were tied    8
Max. diff. allowed between ties    0.00001

Cases Included 24    Missing Cases 0

The analysis of the example is consistent with the parametric One-Way
AOV.  The p-value of 0.0080 suggests that the mean ranks for the groups
are dissimilar enough to conclude that the fat types differ.

Conover and Iman (1981) proposed first ranking the data and then applying
the usual parametric procedure for computing a one-way analysis of
variance.  The results of this procedure are displayed underneath the
Kruskal-Wallis test.  The results are interpreted in the same way as the
usual analysis of variance, comparing the within-group variance to the
between-group variance.  Please note that the usual F test is generally anti-
conservative, giving significant results more often than it should (Iman and
Davenport 1976, 1980).  This is perhaps the case in this example.  Here the
p-value is smaller than that observed with the parametric analysis of
variance or the Kruskal-Wallis test.

We can use the same analysis to illustrate the Categorical method of model
specification.  The data are entered in two variables—a dependent variable
FATABSORB and a categorical variable FATTYPE.  The data are listed in
the table on the next page.
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CASE   FATABSORB    FATTYPE          CASE   FATABSORB    FATTYPE

  1        64          1               13        75          3

  2        72          1               14        93          3

  3        68          1               15        78          3

  4        77          1               16        71          3

  5        56          1               17        63          3

  6        96          1               18        76          3

  7        78          2               19        55          4

  8        91          2               20        66          4

  9        97          2               21        49          4

 10        82          2               22        64          4

 11        85          2               23        70          4

 12        77          2               24        68          4

The model is specified as follows:

Kruskal-Wallis

Results Menu

Once the Kruskal-Wallis AOV is computed and displayed, a Results pull-
down menu appears in the menu at the top of the Statistix window.

Select AOV Table to have the Kruskal-Wallis results displayed again. 
Select Options to display the original dialog box you used to specify the
model.  You can change the details of the model you specified and
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Kruskal-Wallis All-Pairwise Comparisons Test

Variable    Mean  Homogeneous Groups

FAT2      19.500  A
FAT3      13.583  AB
FAT1      11.250  AB
FAT4      5.6667   B

Alpha              0.05
Critical Z Value  2.638     Critical Value for Comparison  10.771
There are 2 groups (A and B) in which the means
are not significantly different from one another.

recompute the analysis.  The Comparison of Mean Ranks procedure is
discussed below.

All-Pairwise

Comparisons

The All-Pairwise Comparisons option is used to compare the mean ranks
of the different groups.  This procedure identifies subsets of similar
(homogeneous) means.

To use the All-Pairwise Comparisons procedure, you enter a value for
alpha, the rejection level, and select the report format.  The results for the
doughnut fat absorption example described on page 147 using the
Homogeneous Groups report format are given below.

The mean ranks are sorted in descending order so the largest one is listed in
the first row.  The columns of letters under the heading “Homogeneous
Groups” indicate which means are not significantly different from one
another.  Group A contains the mean ranks for FAT2, FAT3, and FAT1. 
Group B contains the mean ranks for FAT3, FAT1, and FAT4.  We
conclude that FAT2 is different from FAT4 since neither group A or B
contains both fat types.

The Triangle Matrix report format makes it easier to identify pairs of means
that are different.  An example for the same data appears on the next page.
The numbers in the body of the triangular shaped table are differences
between mean ranks.  Significant differences are indicated with an asterisk.
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Kruskal-Wallis All-Pairwise Comparisons Test

Variable    Mean    FAT1     FAT2     FAT3

FAT1      11.250  
FAT2      19.500   8.250 
FAT3      13.583   2.333    5.917 
FAT4      5.6667   5.583   13.833*   7.917 

Alpha              0.05
Critical Z Value  2.638     Critical Value for Comparison  10.771

The comparison procedure controls the experimentwise error rate.  Like the
Bonferroni comparison of means procedure for the  parametric AOV (see
Chapter 7), the test becomes increasingly conservative as the number of
means increases.  A larger than normal rejection level (e.g., 0.10-0.25) is
often used when testing large numbers of means.  See Daniel (1990) for
details. 

Friedman Two-Way AOV

Specification

The Friedman nonparametric two-way analysis of variance is used to
analyze two-way designs without replication.  The results are equivalent to
Kendall’s coefficient of concordance (Conover 1980).

The analysis can be specified in one of two ways, depending on how the
data are arranged in the variables.  A two-way analysis of variance requires
that each observation be classified by two factors.  For the Categorical
method, all observations of the Dependent Variable are in one variable. 
The two factors are indicated by two Categorical Variables.  This is
illustrated in the dialog box on the next page.

In the Table method, the levels for the one factor are represented by the
variables themselves.  The levels for the other factor are then represented by
the cases.  To specify the model, move the names of the variables that
represent the column factor to the Table Variables box (see the example on
pages 155-156).
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Data

Restrictions

There can be only one observation per cell; no replication is permitted. 
Missing values can’t be included.  You can have up to 500 levels in each of
the two treatment factors.

Example This example is a randomized block design used in Snedecor and Cochran
(1980, sect. 14.2).  The same data are used for as an example in the
Randomized Block Design section of Chapter 7, where a parametric two-
way analysis of variance is computed.  The dependent variable is the
number of soybeans out of 100 that failed to emerge, and the treatments
were various fungicides (the first treatment level was a no-fungicide
control).

To illustrate the Categorical method of model specification, we entered the
observed counts into a single variable named Y.  The fungicides were num-
bered 1 through 5 and entered into a variable named TRT.  The blocks (rep-
licates) were numbered 1 through 5 and entered into a variable named BLK. 
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CASE       Y     TRT     BLK          CASE       Y     TRT     BLK

   1       8       1       1            14       8       3       4

   2      10       1       2            15      10       3       5

   3      12       1       3            16       3       4       1

   4      13       1       4            17       5       4       2

   5      11       1       5            18       9       4       3

   6       2       2       1            19      10       4       4

   7       6       2       2            20       6       4       5

   8       7       2       3            21       9       5       1

   9      11       2       4            22       7       5       2

  10       5       2       5            23       5       5       3

  11       4       3       1            24       5       5       4

  12      10       3       2            25       3       5       5

  13       9       3       3

The Transformation CAT function can be used to generate repetitive
sequences, like those seen for TRT and BLK.  After entering the 25 values
for Y, we can use the Transformation expressions TRT = CAT (5 5) and
BLK = CAT (5 1) to create these variables.  The data are available in the
file Sample Data\soybeans.sx.

The analysis is specified on the preceding page.  The results are presented
on the next page.

For the first factor, which in this case is TRT, the observations are first
ranked within the second factor (BLK).  If there were no differences
between the treatment levels, the mean ranks (averaged across blocks) for
the different treatment levels would be expected to be “similar”.  Tied
observations are given a mean rank (Hollander and Wolfe 1973).  Values
are considered to be tied if they are within 0.00001 of one another. 
“Corrected for Ties” appears in the display when the Friedman statistic is
based on data that contain ties.  For this example, ties within blocks were
found.  It appears that there are definite treatment effects because the p-
value is fairly small (0.0530).
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Friedman Two-Way Nonparametric AOV for FAILURES = TRT BLK

            Mean  Sample

TRT         Rank    Size

Control     4.70       5
Fung #1     2.20       5
Fung #2     3.40       5
Fung #3     2.50       5
Fung #4     2.20       5

Friedman Statistic, Corrected for Ties    9.3469
P-value, Chi-Squared Approximation        0.0530
Degrees of Freedom                             4

        Mean  Sample

BLK     Rank    Size

  1     1.80       5
  2     3.10       5
  3     3.50       5
  4     3.90       5
  5     2.70       5

Friedman Statistic, Corrected for Ties    5.3061
P-value, Chi-Squared Approximation        0.2573
Degrees of Freedom                             4

Max. diff. allowed between ties  0.00001

Cases Included 25    Missing Cases 0

CASE   CONTROL   FUNG1   FUNG2   FUNG3   FUNG4

  1       8         2       4       3       9

  2      10         6      10       5       7

  3      12         7       9       9       5

  4      13        11       8      10       5

  5      11         5      10       6       3

To examine block effects, the role of the variables is reversed.  The
observations are now ranked within treatment levels.  Ties among the 
observations within treatment levels were found, as indicated by the
message with the Friedman statistic.  There appears to be little evidence of
block effects (0.2573).  As with parametric analysis of variance, testing the
block effect will generally not be of much interest.

To use the Table method, we’d choose one factor, say fungicide, to
represent columns and enter the data for each fungicide into a separate
variable.  The cases then represent the blocks (replicates).  

The order of the cases is very important with this format.  The first case
corresponds to the first experimental block, the second case corresponds to
the second block, and so on.  The model is then specified in the dialog box
displayed on the next page.
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Here the variables that represent the fungicide treatments are moved to the
Table Variables box.

The Friedman test is often performed as a companion analysis to the
parametric two-way analysis of variance, especially when the assumption of
normality in parametric analysis of variance is suspect.  It’s not as powerful
as the parametric analysis, but it usually performs quite well.
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Proportion Test

The Proportion Test procedure is used to perform one- and two-sample
hypothesis tests and compute confidence intervals for proportions.

Specification

The one-sample test is used to test whether a proportion differs from a
hypothesized value.  The two-sample test is used to compare proportions in
two independent samples.  Select either the One-sample Test or the
Two-sample Test.

The tests requires that you enter values for the sample sizes and the number
of successes (the number of times the event of interest was observed).  For a
one-sample test, you must enter a value for the Null Hypothesis.  The null
hypothesis for the two-sample test is always that the two proportions are
equal.  Select the two-sided alternative hypothesis "not equal", or a
one-sided alternative "less than" or "greater than".  For the one-sample test,
the alternative hypothesis "less than" means the proportion is less than the
null hypothesis.  For the two-sample test, the alternative hypothesis "less
than" means that the proportion from the first sample is less than the
second.  Enter a value for the percent coverage for confidence intervals.

Example The dialog box above specifies a two-sample test using the two-sided
alternative hypothesis.  The results are displayed on the next page.
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Two-Sample Proportion Test

                 Sample 1    Sample 2

Sample Size            30          36
Successes              20          18
Proportion        0.66667     0.50000

Null Hypothesis: P1 =  P2
Alternative Hyp: P1 <> P2

Difference        0.16667
SE (diff)         0.12218
Z (uncorrected)      1.36    P  0.1725
Z (corrected)        1.11    P  0.2653
Fisher's Exact                  0.2152

95% Confidence Interval of Difference
Lower Limit      -0.07279
Upper Limit       0.40613

The report displays the computed proportions for the two samples and the
difference.  Two versions of the normal approximation tests are provided:
the uncorrected test and the test corrected for continuity.  P-values for both
tests are given.  When the combined sample size is less than 500, Fisher’s
exact test is also displayed.  Fisher’s exact test, when available, is the
preferred test.  In the example, the p-values for all three tests agree: there is
no evidence that the two proportions are different.
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6

Linear Models

Statistix offers you a comprehensive selection of linear model procedures,
which include regression, analysis of variance, and analysis of covariance,
Linear models are among the most powerful and popular tools available for
data analysis.  

The Correlations (Pearson) procedure displays the correlation matrix for a
set of variables.  

The Partial Correlations procedure computes the correlations of a set of
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independent variables with a dependent variable after adjusting for the
effects of another set of independent variables.  

The Variance-Covariance procedure displays the sample variance-
covariance matrix for a set of variables.

The Linear Regression procedure performs simple and multiple linear
regression.  You can compute predicted values and prediction intervals for
any set of independent variable values.  Extensive residual analysis options
are available for model evaluation.  The sensitivity of the regression
coefficients to errors in the independent variables can be examined.

The Best Subset Regressions procedure generates a list of “best” subset
models for a specified regression model.  

The Stepwise Linear Regression procedure performs forward and
backward stepwise linear regression in search of good subset regression
models.

The Logistic Regression procedure is appropriate for a situation where the
dependent variable consists of “binary” data.  Common examples of binary
data are yes or no responses and success or failure outcomes.  

The Stepwise Logistic Regression procedure performs forward and
backward stepwise logistic regression.

The Poisson Regression procedure is appropriate for situations where the
dependent variable consists of discrete counts.  See the section titled
Analyzing Proportions and Counts on page 211 for more background on
when and why Poisson Regression and Logistic Regression are useful. 

The Two Stage Least Squares Regression procedure is used to develop a
prediction equation when one or more of the predictor variables, or right
hand side variables, is an endogenous variable.  An endogenous variable is
one that is determined by the system of equations being solved.  The model
also requires at least one exogenous variable.  An exogenous variable is one
whose value is determined outside the system of equations.

The Eigenvalues-Principal Components procedure computes the
eigenvectors and eigenvalues and the principal components for a set of
variables.  It’s often used in regression when the independent variables are
highly correlated, and it’s also a useful multivariate analysis in its own
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right.

The Analysis of Variance submenu offers a long list of AOV designs:
completely randomized, complete block, Latin square, balanced lattice, full
and fractional factorial, split-plot, strip-plot, split-split-plot, split-strip-plot,
and repeated measures designs.  All of the analysis of variance procedures
contain a results menu offering numerous powerful options including
multiple comparisons, linear contrasts, polynomial contrasts, means plot,
and residual plots.  There are so many AOV procedures and options that
we’ve devoted Chapter 7 to them.

Correlations (Pearson)

Specification

The Correlations procedure computes a correlation matrix for a list of
variables.  Correlations, also called Pearson or product-moment
correlations, indicate the degree of linear association between variables.  

Select the variables for which you want correlations computed.  Highlight
the variables you want in the Variables list, then press the right-arrow
button to move the highlighted variables to the Correlations Variables list
box.  If you want to use a weighting factor, move the name of the variable
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CASE     HEAT    CHEM1    CHEM2    CHEM3    CHEM4

   1     78.5        7       26        6       60

   2     74.3        1       29       15       52

   3    104.3       11       56        8       20

   4     87.6       11       31        8       47

   5     95.9        7       52        6       33

   6    109.2       11       55        9       22

   7    102.7        3       71       17        6

   8     72.5        1       31       22       44

   9     93.1        2       54       18       22

  10    115.9       21       47        4       26

  11     83.8        1       40       23       34

  12    113.3       11       66        9       12

  13    109.4       10       68        8       12

Correlations (Pearson)

            CHEM1     CHEM2     CHEM3     CHEM4

CHEM2      0.2286
CHEM3     -0.8241   -0.1392
CHEM4     -0.2454   -0.9730    0.0295
HEAT       0.7307    0.8163   -0.5347   -0.8213

Cases Included 13    Missing Cases 0

containing the weights to the Weight Variable box.  Use the Fit Constant
check box to specify a model with a constant fitted (checked) or a model
forced through the origin (not checked).  Check the Compute P-Values
check box to have p-values for the correlation coefficients displayed.

Data

Restrictions

You can select up to 50 variables.  If a case in your data has missing values
for any of the variables selected, the entire case is deleted (listwise
deletion).  Negative weights are not allowed.

Example We’ll use the Hald data from Draper and Smith (1966) for our example. 
The variable HEAT is the cumulative heat of hardening for cement after
180 days.  The variables CHEM1, CHEM2, CHEM3, and CHEM4 are the
percentages of four chemical compounds measured in batches of cement. 
The data are listed below (see also Sample Data\Hald.sx).

The model specification is displayed on the preceding page.  The results are
as follows:

Computation-

al Notes

First, the matrix of sums of squares and cross products corrected for the
means is calculated using the method of updating, also known as the method
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of provisional means.  The results are more accurate than if the usual
“computational equations” were used.  If the model is fit without a constant,
the matrix corrected for the means is first computed and then “uncorrected”.

Partial Correlations

Specification

The Partial Correlations procedure computes the “residual” correlation
between variables after adjustment for correlations with another set of
variables.  Partial correlations are often used in manual stepwise regression
procedures to help you decide which variable should be included next in the
regression.

First select the Dependent Variable.  Next select the independent variables
for which you want the correlations adjusted and move them to the Adjust
For Variables list.  Then select the independent variables for which you
want to compute partial correlations and move them to the Correlation
Variables list.  The resulting table displays a correlation coefficient
between the Dependent Variable and each of the Correlation Variables,
adjusted for the Adjust For Variables.  
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Partial Correlations with HEAT  Cumulative Heat of Hardening For Cement

Controlled for CHEM1 CHEM4

CHEM2        0.5986
CHEM3       -0.5657

Cases Included 13    Missing Cases 0

If you want a weighting factor, move the variable containing the weights to
the Weight Variable box.  Use the Fit Constant check box to specify a
constant fitted model (checked) or a model forced through the origin (not
checked).

Data

Restrictions

The total number of independent variables can’t exceed 50.  Missing values
or zero weights cause the entire case to be dropped.  Negative weights
aren’t allowed.

Example We’ll use the Hald data from Draper and Smith (1966) for our example. 
The variable HEAT is the cumulative heat of hardening for cement after
180 days.  The variables CHEM1, CHEM2, CHEM3, and CHEM4 are the
percentages of four chemical compounds measured in batches of cement. 
The data are listed on page 162 and can be obtained from the file
Sample Data\Hald.sx.

The model specified in the dialog box on the preceding page is used to
compute the partial correlations for CHEM2 and CHEM3 on HEAT,
adjusted for CHEM1 and CHEM4.  The results are as follows:

The partial correlation of CHEM2 with HEAT after the effects of CHEM1
and CHEM4 have been removed is 0.5986.  The partial correlation of
CHEM3 with HEAT, adjusted for CHEM1 and CHEM4, is -0.5657.

Computation-

al Notes

First the matrix of sums of squares and cross products corrected for the
means is calculated by using the method of updating, also known as the
method of provisional means.  The results are more accurate than if the
usual “computational equations” were used.  If you fit a model without a
constant, the matrix corrected for the means is first computed and then
“uncorrected”.  The matrix is ordered so that the “variables adjusted for”
are on the left, and these variables are then “swept” over (Seber 1977) to
produce the partial correlations.
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Variance-Covariance

Specification

The Variance-Covariance procedure computes the variances and
covariances for a list of variables.

Select the variables for which you want variances and covariances
computed.  Highlight the variables you want in the Variables list, then press
the right-arrow button to move them to the Var-Covar Variables list box. 
Select the name of a weighting variable for weighted variances-covariances. 
If you specify a model without a constant (uncheck the Fit Constant check
box), Statistix computes the sums of squares and cross products uncorrected
for the means.

Data

Restrictions

Example

Up to 50 variables can be specified.  If a case in your data has missing
values for any of the variables, the entire case is deleted (listwise deletion). 
Negative weights aren’t permitted.

We’ll use the Hald data from Draper and Smith (1966) for our example. 
The variable HEAT is the cumulative heat of hardening for cement after
180 days.  The variables CHEM1, CHEM2, CHEM3, and CHEM4 are the
percentages of four chemical compounds measured in batches of cement. 
The data are listed on the next page.
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CASE     HEAT    CHEM1    CHEM2    CHEM3    CHEM4

   1     78.5        7       26        6       60

   2     74.3        1       29       15       52

   3    104.3       11       56        8       20

   4     87.6       11       31        8       47

   5     95.9        7       52        6       33

   6    109.2       11       55        9       22

   7    102.7        3       71       17        6

   8     72.5        1       31       22       44

   9     93.1        2       54       18       22

  10    115.9       21       47        4       26

  11     83.8        1       40       23       34

  12    113.3       11       66        9       12

  13    109.4       10       68        8       12

Variance - Covariance Matrix

                CHEM1      CHEM2      CHEM3      CHEM4       HEAT

CHEM1         34.6026
CHEM2         20.9231    242.141
CHEM3        -31.0513   -13.8782    41.0256
CHEM4        -24.1667   -253.417    3.16667    280.167
HEAT          64.6635    191.079   -51.5192   -206.808    226.314

Cases Included 13    Missing Cases 0

The model is specified in the dialog box on the preceding page.  The
variances and covariances are computed for all variables.  The results are
displayed below.

The values displayed on the diagonal of the matrix are the variances, the
off-diagonal values are covariances.

Computation-

al Notes

The sums of squares and cross products matrix corrected for the means are
calculated by using the method of updating, also known as the method of
provisional means.  The results are more accurate than if the usual
“computational equations” were used.  If you fit a model without a constant,
the matrix corrected for the means is first computed and then “uncorrected”.
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Linear Regression

Specification

The Linear Regression procedure performs simple and multiple linear
regression.  Linear regression is a popular technique for examining linear
relationships between a response (dependent) variable and one or more
predictor (independent) variables.  This procedure can perform both
weighted and unweighted least squares fitting, and you can specify no-
intercept models.  Extensive analysis of variance and residual analysis
options are available.  You can also compute predicted values and
prediction intervals.  You can examine the sensitivity of the regression
coefficients to measurement errors in the independent variables.

To specify a regression model, first select the dependent variable.  Highlight
the variable in the Variables list, then press the right-arrow button next to
the Dependent Variable box to move the highlighted variable into that box. 
Then select one or more independent variables and move them to the
Independent Variables list box.  For weighted regression, move the
variable containing the weights to the Weight Variable box.  Use the Fit
Constant check box to specify a constant fitted model (checked) or a model
forced through the origin (not checked).

Data

Restrictions

You can include up to 50 independent variables in the model.  If any values
within a case are missing for any of the variables in the model, the case is
dropped (listwise deletion).  If an independent variable is too highly
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CASE     HEAT    CHEM1    CHEM2    CHEM3    CHEM4

   1     78.5        7       26        6       60

   2     74.3        1       29       15       52

   3    104.3       11       56        8       20

   4     87.6       11       31        8       47

   5     95.9        7       52        6       33

   6    109.2       11       55        9       22

   7    102.7        3       71       17        6

   8     72.5        1       31       22       44

   9     93.1        2       54       18       22

  10    115.9       21       47        4       26

  11     83.8        1       40       23       34

  12    113.3       11       66        9       12

  13    109.4       10       68        8       12

Unweighted Least Squares Linear Regression of HEAT

Predictor

Variables   Coefficient   Std Error         T         P      VIF

Constant        62.4054     70.0710      0.89    0.3991
CHEM1           1.55110     0.74477      2.08    0.0708     38.5
CHEM2           0.51017     0.72379      0.70    0.5009    254.4
CHEM3           0.10191     0.75471      0.14    0.8959     46.9
CHEM4          -0.14406     0.70905     -0.20    0.8441    282.5

R-Squared           0.9824      Resid. Mean Square (MSE)    5.98295
Adjusted R-Squared  0.9736      Standard Deviation          2.44601

Source        DF        SS        MS        F        P

Regression     4   2667.90   666.975   111.48   0.0000
Residual       8     47.86     5.983
Total         12   2715.76

Cases Included 13    Missing Cases 0

correlated with a linear combination of other independent variables in the
model (collinearity), it’s dropped from the model.  If you specify a weight
variable, cases with negative weights are deleted.

Example We’ll use the data from Hald (1952) for our example.  Draper and Smith
(1966) used the same data set to illustrate selecting the “best” regression
equation.  The variable HEAT is the cumulative heat of hardening for
cement after 180 days.  The variables CHEM1, CHEM2, CHEM3, and
CHEM4 are the percentages of four chemical compounds measured in
batches of cement.  The goal is to relate the heat of hardening to the
chemical composition.  The data are listed below and can be obtained from
the file Sample Data\Hald.sx.

The full model is specified in the dialog box on the preceding page.  The
results are listed below.

The regression coefficient table gives the regression coefficients (slopes)
associated with the independent variables and their standard errors,
t-statistics, associated p-values, and variance inflation factors (VIF).  You
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use p-values to test whether the slopes are significantly different from zero
if all other variables are already in the model.  

Large VIF’s in a multiple regression indicate that collinearity is a problem. 
The VIF represents the increase in variance of a coefficient due to
correlation between the independent variables.  Values of 7.0 or 10.0 have
been suggested for the cutoff of what constitutes a “high” value.

Statistix provides several other summary statistics and an analysis of vari-
ance table for the regression, including the F test and associated p-value for
the significance of the overall model.  In our example, the overall F is
111.48, with a p-value of 0.0000.  This indicates that at least some of the
independent variables are important in explaining the observed variation in
HEAT.  From the coefficient column, the regression equation is found to
be:

  HEAT = 62.4 + 1.55×CHEM1 + 0.510×CHEM2 + 0.102×CHEM3 -
0.144×CHEM4

However, the t tests suggest that some of the coefficients are not
significantly different from zero.  The high VIF’s warn us that collinearity
among the independent variables is a problem.  Selecting the best model is
discussed on page 186.

Regression

Results Menu

Once the regression analysis is computed and displayed, a Results pull-
down menu appears on the menu at the top of the Statistix window.  Click
on the Results menu to display the regression results menu shown below.

Select Coefficient Table from the menu to redisplay the regression
coefficient table.  Select Options to return to the main dialog box used to
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specify the regression model.  The remaining options are described on the
following pages.

Comparison

of Regression

Lines

Frequently, the relationship between two variables X and Y is studied in
samples obtained by different investigators, or in different environments, or
at different times.  In summarizing the results, the question naturally arises:
can the regression lines be regarded as the same?

This procedure compares simple regression lines for two or more groups.  It
tests for equality of variance, slope, and elevation.  This test can only be
used for simple regression, that is, when there is only one independent
variable.  

First, run the Linear Regression procedure.  Then select the Comparison of
Regression Lines from the Results menu and select a Group Variable
identifying two or more groups.  The group variable can be any data type
(real, integer, date, or string) and can have up to 500 levels.

As an example, consider the cholesterol and age data from Chapter 4. In a
survey of women from two states, cholesterol concentration and age data
were collected.  We first perform linear regression of cholesterol
concentration on age and find a linear relationship.  We now want to
determine if the regression lines are the same for subjects from the two
states the data were collected: Iowa and Nebraska.  We select the variable
STATE as show in the dialog box above.  The results are shown on the next
page.
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Durbin-Watson Test for Autocorrelation

Durbin-Watson Statistic  1.7498

P-Values, using Durbin-Watson'S Beta Approximation:
  P (positive corr) = 0.2846,  P (negative corr) = 0.7154

Expected Value of Durbin-Watson Statistic     2.0359
Exact Variance of Durbin-Watson Statistic    0.23450

Cases Included 13    Missing Cases 0

Comparison of Regression Lines for CONC = AGE

STATE           N   Intercept       Slope         MSE

Iowa           11     35.8112     3.23814     2391.22
Nebraska       19     101.298     2.52044     1580.82

                                F          DF          P

Equality of Variances        1.51       9, 17     0.2210
Comparison of Slopes         0.38       1, 26     0.5425
Comparison of Elevations     3.00       1, 27     0.0947

The statistics for the individual regression lines are listed first.  Below that
are three F tests: for equality of variance, slopes, and elevations.  We first
compare the variances for the two regression lines using Bartlett’s test.  The
p-value of 0.2210 allows us to conclude that there are no real differences
between the variances.  Assuming homogeneity of residual variances, we
now compare the two slopes, 3.24 for Iowa, and 2.52 for Nebraska.  The p-
value of 0.5425 does not suggest that the slopes are different.  Assuming
parallel lines and homogeneous variance, we now consider the test for
comparison of elevations.  The p-value of 0.0947 is not quite significant. 
We conclude that the regression lines are the same for the two states.

You can use the Scatter Plot procedure discussed in Chapter 4 to visually
compare regression lines using a grouping variable.  See Snedecor and
Cochran (1980) for details of these tests.

Durbin-Watson

Test

This option computes the Durbin-Watson test for autocorrelation for a
particular regression model.  In the example below, the regression model
was specified as HEAT = CHEM2 CHEM3.  The results are as follows:

The Durbin-Watson statistic and approximate observed significance levels
(p-values) are displayed.  Use the Durbin-Watson statistic to test whether
the random errors about the regression line exhibit autocorrelation.  In our
example, there is little suggestion of either positive (p=0.2846) or negative
(p=0.7154) autocorrelation.
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Most tests in regression are based on the assumption that the random errors
are independent.  Violation of this assumption due to autocorrelation can
invalidate the results of these tests.  Another reason to check for auto-
correlation is because it may suggest that you need additional independent
variables in the model.

Autocorrelation can occur when the data have some natural sequence, i.e.,
the observations are ordered in time or space.  You should always consider
the possibility of autocorrelation in trend data, such as price or population
levels over time.  Positive autocorrelation results when large positive errors
tend to be followed by large positive errors and large negative errors tend to
be followed by large negative errors.  Negative autocorrelation is less
common and results when large errors tend to be followed by large errors
with the opposite sign.  Chatterjee and Price (1991) give more detail and
some examples of the application of the Durbin-Watson test.

If there is neither positive nor negative autocorrelation, the Durbin-Watson
statistic will be close to 2.  A value close to 0 suggests positive autocorrela-
tion, and a value close to 4 suggests negative autocorrelation.  The observed
significance levels (p-values) are calculated with the beta distribution
approximation suggested by Durbin and Watson (1971).  Their results
indicated that this approximation usually works well even for relatively
small sample sizes. (Statistix will not compute the test for samples with
fewer than ten cases).  The procedures to calculate the significance level,
the expected value, and the variance are described in Durbin and Watson
(1951).  The beta approximation can’t be used when the variance of the
Durbin-Watson statistic is large, in which case, the p-values are not
computed.

The Runs Test and Shapiro-Wilk Test are also useful for examining
whether the test assumptions in regression have been violated.

Prediction This option computes the predicted or fitted value of the dependent variable
in a regression for values of the independent variable(s) you specify.  The
values for the independent variables can be indicated in two ways.  One is
simply to enter the list of desired values.  The other is to enter a case
number that contains the desired values for the independent variables.  You
choose a method by selecting one of the Specification Method radio
buttons.
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Predicted/Fitted Values of HEAT

Lower Predicted Bound    -6.9581     Lower Fitted Bound    -4.7225
Predicted value           130.41     Fitted Value           130.41
Upper Predicted Bound     267.77     Upper Fitted Bound     265.53
SE (Predicted Value)      61.650     SE (Fitted Value)      60.646

Unusualness (Leverage)   29.9737
Percent Coverage            95.0
Corresponding T             2.23

Predictor Values: CHEM1 = 8.0000, CHEM3 = 80.000

The Value Method is illustrated in the dialog box above.  The values 8 and
80 are entered in the Predictor Values box for the variables CHEM1 and
CHEM3.  The default value of 1.0 is used for the weight, so the resulting
prediction intervals are for a single future observation.  If you specify a
weight w, the prediction interval is for the mean of w future observations. 
You can also specify the percent coverage for confidence intervals for the
fitted value.  Enter a value in the C.I. Percent Coverage box.  The results
for the example are displayed below.

The predicted value is 130.41 with a standard error of 61.650.  The 95%
prediction interval is -6.9581 to 267.77.  This interval is expected to contain
the value of a future single observation of the dependent variable HEAT
95% of the time, given that HEAT is observed at the independent variable
values CHEM1 = 8, CHEM3 = 80.

The unusualness value tells you how “close” the specified independent data
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Predicted/Fitted Values of HEAT

Lower Predicted Bound     61.404     Lower Fitted Bound     78.644
Predicted value           87.692     Fitted Value           87.692
Upper Predicted Bound     113.98     Upper Fitted Bound     96.741
SE (Predicted Value)      11.798     SE (Fitted Value)      4.0609

Unusualness (Leverage)    0.1344
Percent Coverage            95.0
Corresponding T             2.23

Case number 7 was used to estimate the regression
Predictor Values: CHEM1 = 3.0000, CHEM3 = 17.000

point is to the rest of the data.  If the point isn’t close to the rest of the data,
then you’re extrapolating beyond your data—and prediction abilities may
be very poor.  An unusualness value greater than 1.0 should be considered
large, so the prediction results in the example above are clearly suspect.

We illustrate the Case Method for specifying values for the independent
variables below.

Here we simply enter a case number that refers to a case in your open
Statistix file.  In the example dialog box above, we’ve asked for predicted
values for case number 7.  The results are:

Unlike most other procedures, the prediction option lets you compute
statistics for omitted cases.  So you can divide the data into two subsets by
omitting some cases.  The regression model will be fitted using the selected
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cases, and you can use this procedure to see how well the model fit cases
that were not used to fit the model.  Points used to fit the regression
shouldn’t be used to validate the regression model because least squares
strives to optimize the goodness-of-fit at these points, so these points give
an optimistic impression of the regression’s performance.

For weighted regression models, the value for the weight variable at the
case specified will be used as the weight in the prediction interval
calculations.  A weight w causes the prediction interval to be computed for
a mean of w future observations.

See the Save Residuals procedure discussed on page 176 for an alternative
method of obtaining fitted values for cases in your data file.

Plots

Statistix offers four regression plots directly from the Results menu.  You
can also save fitted values and residuals (page 176) and use the Scatter Plot
procedure described in Chapter 4 to graph additional residual plots.

The Simple Regression Plot is only available when there is one
independent variable in the model.  You can see an example of this on the
next page.  The observed values are displayed.  The straight line in the
center represents the fitted line.  The inside curved lines mark the 95%
confidence interval for the fitted line, the outside curves mark the 95%
predicted interval.
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The Std Resids by Fitted Values plot is a scatter plot with the standardized
residuals on the Y axis and the fitted values on the X axis.  You use this plot
to check the assumption of constant variances.

The Std Resids Time Series plot is a scatter plot with case numbers on the
X axis.  You’ll find this plot useful when the data are sequentially ordered.

The Normal Probablity Plot is used to create a rankit plot of the standard-
ized residuals to test the assumption of normality.  The Shapiro-Wilk
statistic for normality is also given (see Chapter 8).

Save Residuals Statistix can do extensive residual analysis, which is very important for
model evaluation.  Systematic patterns in the residuals can suggest
transformations or additional variables that would improve the model. 
Residuals are important for “outlier” analysis and to identify unusual
observations.  You can also use residuals to find those observations that are
most influential in determining the values of the regression coefficient
estimates.  Space doesn’t permit a detailed discussion here; if you’re
interested, consult Weisberg (1985).
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Use the tab and shift-tab keys to move the cursor to the residual name
you’re interested in.  Then type the name of a new or existing variable.  You
can click on the down-arrow button to display the list of current variables. 
You can change the value for percent coverage for predicted and confidence
intervals by entering a new value in the C.I. Percent Coverage box.  

When you’ve finished entering variable names, press the OK button to start
the computations.  The results are not displayed.  The residuals are stored as
variables and can be examined using such procedures as Scatter Plot,
Shapiro-Wilk Test, Print, and Runs Test.  Each of the residual options is
described in more detail below.

The Fitted Value option saves the fitted (predicted) values for the
dependent variable in a new variable.  You can plot these values against the
dependent variable to see how well the model fits the observed values.

The Residual option saves the raw residuals.  You use these to examine
how well the model fits the data.  Systematic trends indicate that data trans-
formations may be needed or that important independent variables were not
included in the model.  Large residuals may indicate observations that are
“outliers”.  The raw residual is computed as the observed value of
dependent variable minus the fitted value.

The Leverage option saves the leverage values in a new variable.  Leverage
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measures how influential a point is in determining the regression
coefficients.  Depending on the values of the independent variables, some
data points are much more influential in determining the values of the
regression coefficients than others.  In general, the further the values of the
independent variables are from their averages, the more influential these
data points are in determining the regression coefficients.  Points with
“unusual” independent variable values have high leverage.  If you’re
familiar with the matrix representation of multiple regression, leverage is
calculated as the diagonal elements of the X(X X) X matrix (assuming noT -1  

weights were used).

The Standardized Residual option saves the standardized residuals in a
new variable.  Raw residuals are very popular for examining model fit,
although they do possess at least one potential problem.  Data points located
at “unusual” values of the independent variables will have high leverage,
which means that they tend to “attract” the regression line and seldom have
large residuals.  Standardized residuals adjust for this problem to some
extent by standardizing each raw residual with its standard error (also
known as “studentizing”).  The standard error of a residual is computed as
the square root of the quantity MSE((1 - LEVERAGE), where MSE is the
residual mean square for error.

The Distance option computes Cook’s distance measure (Cook 1977,
Weisberg 1985) and saves it in a new variable.  It’s very useful for finding
influential data points, and it considers the effects of both the dependent and
independent variables (LEVERAGE considers the independent variables
only).  Cook’s distance for an observation can be thought of as a measure of
how far the regression coefficients would shift if that data point was
eliminated from the data set.  Remember that it’s a distance measure and not
a test statistic.  Usually, Cook’s distance by itself isn’t very useful because
it is a function of sample size and the number of variables in the regression
model.  The next option, P (Distance), which “standardizes” Cook’s D, is
generally more useful.
 
P (Distance) calculates the “pseudo-significance level” of the confidence
bound associated with the Cook’s distance and saves it in a new variable. 
You can think of Cook’s distance for an observation as a measure of how
far the regression coefficients would shift if that data point were eliminated
from the data set.  It seems reasonable to standardize this distance by
examining what level confidence bound the shifted regression coefficients
would fall on.  For example, if eliminating the I-th data point causes the
new coefficients to shift to a position that corresponds to the edge of a 90%
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confidence region  around the original estimates, this may be cause for
concern.  Again, Cook’s distance isn’t a test statistic but rather a distance
measure, and you shouldn’t think of P (Distance) as an observed
significance level (hence the term “pseudo-significance”) but as a
standardized distance.

The Outlier option computes the t-statistic for the outlier test and saves it in
a new variable.  You may suspect an observed value of the dependent data
that deviates substantially from the predicted value of being an outlier.  This
is usually tested with a t-statistic, which is the result of this option.  The
computations follow Cook (1977).

P (Outlier) computes the p-value for the t-statistics resulting from the
outlier test and saves it in a new variable.  The computed p-value is
appropriate for a priori tests for a single outlier.  In other words, it’s the
appropriate observed significance level if you were interested in testing one
particular case that is suspected of being an outlier before the data was
observed.  This is a rather unusual circumstance; more often, you notice
potential outliers only after inspection of the residuals.

If you suspect a case of being an outlier after inspecting the data, you must
give it special consideration.  Suppose there were n cases.  You now need to
decide whether the value of the observed t-statistic is “unusual” given that
it’s the “most unusual” out of n repeated t tests.  If the a priori p-values are
used, then too many cases will be detected as “outliers”, so you need to
somehow “inflate” the a priori p-values.  This inflation can be easily
performed with Bonferroni’s inequality (Weisberg 1985).  

For example, suppose there were n cases inspected for outliers.  Then,
Bonferroni’s equality says that the actual observed significance level will be
no greater than nP, where P is the p-value returned by P (Outlier).  In
practice, the observed significance level may be substantially less than nP;
Bonferroni’s procedure has an undesirable property of becoming too
conservative as n increases.  

As noted earlier, you can compute Outlier and P (Outlier) for cases that
were omitted and not used in the regression.  Suppose m cases are used in
the regression and m' are omitted.  If you’re interested in inspecting all m +
m' cases for outliers, then you should use  n = m + m'.  If you’re interested
in just the omitted cases, then n = m'.  The choice of n is your responsibility;
Statistix always gives you the a priori p-value.
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The Prediction Interval option computes the half-width confidence
interval for predicted values.  If the original regression model didn’t include
a weighting variable, the results that are saved are the half-widths of the
prediction intervals for single future observations.  Otherwise, the results
are the half-widths of prediction intervals for means of w future
observations, where w is the value of the weight variable.  Use the C.I.
Percent Coverage box to change the coverage level.

Suppose you save the prediction intervals in a variable called PI95, and the
fitted values are saved in a variable called YHAT.  Using
Transformations, you can construct upper and lower prediction bounds as:

  LOWER = YHAT - PI95
  UPPER = YHAT + PI95

The Confidence Interval computes the half-width confidence interval for
fitted values.

Treatment of

Omitted

Cases and

Missing Y

Values

Statistix returns values for certain residual menu options for cases that
aren’t used for estimation.  Values are computed for predicted value,
residual, leverage, outlier, and P (outlier) for omitted cases.  A case that is
not omitted may still not have been used for estimation if some of the values
for that case are missing.  If the only missing value for a case is the
dependent variable, you can obtain values for predicted value and leverage.

These statistics derived from cases not used for estimation are especially
useful for model validation.  For omitted cases, predicted values are just
what their name implies.  For omitted cases, the residual option returns
predicted residuals.  Predicted residuals are, as you’d expect, the difference
between the observed dependent variable value and predicted value (eq.
2.2.22 of Cook and Weisberg 1982).  For cases that aren’t used in the
regression, leverage is somewhat unfortunate terminology.  “Unusualness”
or “generalized distance” would be a better term.  For cases not used for
estimation, this statistic measures how unusual the independent variable
values of a case are relative to the values for cases used for estimation (see
Weisberg 1985).

The interpretation of outlier is interesting and important.  For cases used for
estimation, outlier returns the t-statistic for the null hypothesis that the
particular case conforms to the model fitted to the rest of the cases.  An
intuitive approach to constructing such a test is to first perform the
regression without the particular case.  From this regression, you can
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compute the predicted residual for the particular case, say e.  It’s fairly easy
to see that the standard error of e is simply the standard error of prediction,
and the resulting statistic e/SE(e) should follow a t-distribution under the
null hypothesis that E[e] = 0.  This leads to an alternative interpretation of
outlier as a predicted Studentized residual.  Since the standard error used
for Studentizing was derived from a data set that didn’t include the
particular point of interest, Cook and Weisberg (1982) refer to this as
external Studentizing.  Note that for the m cases used for estimation, the
corresponding outlier values are computed from the m different data sets
that did not include the case of interest.  (The usual standardized residual is
internally Studentized, which means the set of cases used to derive the
standard error included the case for the residual.)

If there were m cases used in the original regression, it would appear that m
separate regressions are needed to compute outlier just for the points used
for estimation.  However, as Cook and Weisberg (1982) show, there are
some remarkable identities that permit the calculation of these statistics
from quantities obtained from only the one regression using the m points.  If
the regression contains p parameters, the outlier statistic for a case used for
estimation has m - p - 1 degrees of freedom associated with it.

This now suggests how to handle cases not included in the regression.  As
before, the statistic is e/SE(e), where e is the predicted residual and SE(e) is
the standard error for prediction.  (The calculation of the standard error of
prediction is described under Computational Notes.)  For all cases not in the
set of m cases used for estimation, outlier uses the same regression based on
the m cases for the base comparison.  (This is in contrast to the situation for
Outlier for cases that were used in estimation; each such Outlier uses a
different data set of m - 1 cases for base comparison.)  This gains an extra
case for computing the comparison regression for cases not used for estima-
tion, so the Outlier statistic for a case not used for estimation has m - p
degrees of freedom associated with it.

For cases not used for estimation, the usual standardized (internally
Studentized) residuals can’t be computed by definition.  However, when
you interpret them as predicted Studentized residuals, you can use outlier
statistics for most of the purposes for which you’d want standardized
residuals.

Sensitivity Linear regression requires the assumption that the independent variables are
measured without error.  The Sensitivity procedure determines how
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sensitive the estimated regression coefficients are to violations of this
assumption.  The user needs to specify the expected size of the errors
associated with each of the independent variables, which can be done in one
of two ways.

If you know the standard deviations of the errors, you can enter them
directly using the Standard Deviations method.  For example, if the values
for an independent variable are the readings from some instrument, the
standard error of the measures may be known from calibration results. 
However, precise information about the errors often won’t be available. 
Sometimes the best you can do is to say, “I trust the figures down to—but
not including— the d-th digit, which may be off by plus or minus 1".  Often
d will point to the digit at which rounding error occurred.  In this case, you
specify the position of the leftmost untrustworthy digit relative to the
decimal point.  For example, d = 2 for 9340.0 means you think the 4 may be
in error.  A way to model this is to assume that an additive random error is
associated with 9340.0 and is uniformly distributed on the interval -5 to 5,
which is exactly what Statistix does when treating ROUNDING error
sensitivity.  Negative values of d are used to indicate digits right of the
decimal, for example, d = -4 points to the 8 in 0.03480.  Values for d must
be in the set of nonzero integers from 21 to -20.  

We’ll use the Hald data again to illustrate the procedure.  Assume the
regression was Y = CHEM1 CHEM2 CHEM3 CHEM4.  Assume the
figures are probably accurate except perhaps for rounding error in the least
significant digit.  Statistix assumes that this rounding error is uniformly
distributed in the interval -0.5 to 0.5.  The options are specified in the dialog
above.  The results are presented in the table on the next page.
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Coefficients' Sensitivities to Errors in Independent Variables

            Variable in which Error Occurs

               CHEM1      CHEM2      CHEM3      CHEM4

Error SD       0.289      0.289      0.289      0.289

Constant       0.469      0.554      0.558      0.575
CHEM1          0.829      0.943      0.923      0.962
CHEM2          0.372      0.452      0.463      0.474
CHEM3         -0.355     -0.250     -0.271     -0.230
CHEM4         -0.169  -8.75E-02  -7.89E-02  -6.74E-02

Coefficients' Sensitivities to Errors in Independent Variables

            Variable in which Error Occurs

               CHEM1      CHEM4

Error SD       0.289      0.289

Constant       2.496      2.866
CHEM1          1.816      2.205
CHEM4          1.918      2.276

What is the interpretation of these results?  When the independent variables
represent continuous quantities, they’ll always have some error associated
with them.  The question is whether the errors are large enough to seriously
influence the results.

Suppose the independent variables were “perturbed” with errors of the
specified size and the regression analysis rerun.  We’d be happy if the slope
estimates after perturbation were similar to those from before.  The
sensitivity coefficients indicate just how similar the new coefficients after
perturbation are expected to be to the previous ones.  More specifically, 
sensitivity coefficients give an index of how many significant figures will
agree with the coefficients.  For example, the estimates 0.89768 and
0.89735 agree to 3 figures, and this degree of agreement is expected when
the sensitivity coefficient is near 3.  Small sensitivity coefficients are
undesirable.  Of course “small” is subjective, but if the values are near or
less than 1, such as in the example, the analysis clearly is very sensitive to
errors in the independent variables and the regression coefficients can’t be
trusted.

It is interesting to compare these sensitivities with those for the model Y =
CHEM1 CHEM4:

The sensitivity coefficients have increased considerably, which means the
slope coefficients are now substantially less sensitive to the errors.  This
makes an interesting and very important point about this data set.  CHEM1,
CHEM2, CHEM3, and CHEM4 are nearly collinear; for all cases, the sums
of these variables are between 95 and 98.  When the data are nearly
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Stepwise Anlaysis of Variance of HEAT

         Individual   Cum   Cumulative   Cumulative    Adjusted  Mallows'

Source           SS    DF           SS           MS   R-Squared       CP    P

Constant     118372
CHEM1       1450.08     1      1450.08      1450.08      0.3009    202.5    2
CHEM2       1207.78     2      2657.86      1328.93      0.9680      2.7    3
CHEM3       9.79387     3      2667.65      889.217      0.9734      3.0    4
CHEM4       0.24697     4      2667.90      666.975      0.9736      5.0    5
Residual    47.8636    12      2715.76      226.314

R-Squared           0.9824      Resid. Mean Square (MSE)    5.98295
Adjusted R-Squared  0.9736      Standard Deviation          2.44601

collinear, the slope coefficients become very sensitive to minor changes in
the independent variables.  Many hours have been wasted by researchers
trying to divine the interpretation of slope coefficients that were artifacts of
the interaction of near-collinearity and errors in measurement.  Reducing
the degree of correlation in the set of independent variables has
substantially reduced the sensitivities to the influence of roundoff errors.

If you’re not certain how trustworthy your independent variables are, try
some “worst-case scenarios”.  In other words, use large potential errors.

The sensitivity calculations are described in Weisberg (1982, 1985).  We
display the negative log (base ten) of the relative sensitivity coefficient,

10 jkwhich in Weisberg’s notation is -log (g ).  When you specify a placeholder
d, the standard deviation of the error is calculated by assuming the error is a
uniform random variable on the interval centered at 0 of width 10(n - sgn(n))

(sgn(n)=1 if n>0, sgn(n)=0 if n<0).  The standard deviation is then 
10 /12 .  If the absolute value of an estimated coefficient is too small(n-sgn(n)) 1/2

(<1.0E-06) for reliable calculations, an M is displayed.  

Stepwise AOV

Table

This option produces a stepwise analysis of variance table for the specified
regression model.  The row order of the stepwise table reflects the order in
which the independent variables are specified in the model.  For the Hald
example, the results are presented in the table below.

The table lists the individual contribution to the sums of squares, the
cumulative mean squares, F test for the subset model versus the full model,

pand associated p-values, cumulative adjusted R , and Mallows’ C  2

statistic (see Miscellaneous Regression on the next page).

This table is useful for testing the contribution of subsets of the independent
variables to the overall model.  For example, you are interested in testing
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Variance-Covariance Matrix for Coefficients

             Constant      CHEM1      CHEM4

Constant      4.51131
CHEM1        -0.19254    0.01916
CHEM4        -0.08332    0.00165    0.00237

whether CHEM3 and CHEM4 add anything to the model once CHEM1 and
CHEM2 are already included.  We first find the difference between the
cumulative sums of squares for the model with all independent variables in
it and one with just CHEM1 and CHEM2: 2667.90 - 2657.86 = 10.04. 
Because we’re testing the contribution of two parameters, this sum of
squares has two degrees of freedom associated with it and the resulting F
test is F = (10.04/2)/5.983 = 0.839 (5.983 is the residual mean square of the
full model).  An F statistic this small suggests that CHEM3 and CHEM4
contribute little to the model once CHEM1 and CHEM2 are already
included.  However, this test says little about whether the model with just
CHEM1 and CHEM2 is a “good” model.

Variance-

Covariance of

Betas

Select this option to obtain the variance-covariance matrix of the regression
coefficient estimates.  Once you’ve selected this option, the matrix is
displayed.

The diagonal elements of the matrix are the variances of the regression
coefficients.  The off-diagonal values are the covariances; for example,
0.00165 is the covariance of the coefficient estimates of CHEM1 and
CHEM4.

This matrix is most commonly used for constructing confidence regions
about coefficient estimates, and for testing hypotheses about various
functions of the coefficient estimates.  More detail on these topics can be
found in Weisberg (1985).

Miscellaneous

Regression

Topics

pMallows’ C  statistic, R , and adjusted R  are important criteria for2 2

evaluating and comparing regression models.  

pThe Mallows’ C  statistic is useful for model selection.  It’s discussed in
detail by Daniel and Wood (1971), Snedecor and Cochran (1980, p. 359)

pand Weisberg (1985).  The C  statistic is based on the fact that not including
an important independent variable in the model results in the fitted response

p pvalues being biased.  C  gives an index of this bias.  “Good” models have C
values near to or less than p, where p is the number of parameters in the
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model.  (Negative values will occasionally be observed).  This statistic is
most useful for eliminating variables that contribute little to the model. 
However, it tells you nothing about whether you started with all of the
correct independent variables in the first place.

The R  and adjusted R  statistics measure the goodness of fit of a2 2

regression model.  R  measures the proportion of variance in the dependent2

data explained by the regression.  It’s computed as 1 - RSS/SST, where RSS
is the residual sum of squares and SST is the total sum of squares.  A
potential problem with R  is that it always increases as new independent2

variables are included in the model (RSS always decreases), even if they
don’t possess any relationship with the dependent variable.  Adjusted R  is2

adjusted for the number of independent variables in the model to correct for
this problem, and, therefore, will often be more interesting than the
unadjusted R .  Adjusted R  is computed as 1 - ((n - 1) / (n - p)) x (1 - R ),2 2 2

where n is the number of cases and p is the number of parameters in the
regression.  Adjusted R  is a monotonic function of the residual mean2

square.  Unlike the unadjusted R , negative adjusted R 's will occasionally2 2

be observed.  Chatterjee and Price (1991), Draper and Smith (1966), and
Weisberg (1985) are good references for more detail on these statistics.

For models without a constant, we use the total sums of squares adjusted for
the mean to compute R  (Gordon, 1981).  This can lead to negative values2

for R  and negative adjusted R  when a no constant model is a poor fit.2 2

Best Model

Selection

When there are a moderate number of independent variables, Best Subsets
Regressions is a good way to select the best model.  However, the number
of subsets grows rapidly as the number of independent variables increases. 
If there are too many independent variables, use the Stepwise Linear
Regression procedure.  Draper and Smith (1966) present a good description
of popular stepwise procedures.  The potential problem with stepwise
procedures is they do not necessarily result in a model that’s best when

pjudged by adjusted R or Mallows’ C .  It’s generally a good idea to try at2 

least two stepwise procedures, such as backward elimination and forward
inclusion, to see if they result in the same model.  

Model selection is somewhat of a craft.  Regression analysis is usually
performed (1) to explore possible cause-effect relations, (2) to develop
some predictive relationship, or (3) some combination of these.  The
relative importance of each of these goals may have some bearing on the
model selection strategy used.  Cause-effect modeling focuses on
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determining the “important” independent variables.  Predictive modeling
focuses more on the development of a good predictor of the dependent
variable than on the contribution due to any particular independent variable. 
Obviously, the distinction between cause-effect analysis and predictive
modeling isn’t a sharp one and most analyses include components of both. 
(As an aside, you should realize that regression analysis can’t actually
establish cause-effect relationships.  It can examine the nature and extent of
association between the dependent and potential independent variables. 
The interpretation of these associations as cause-effect is outside the realm
of statistics, and lies in the domain of the appropriate subject-matter field.)
 
In addition to F tests, there are several other popular statistics for evaluating
the “goodness” of a regression model.  Some of these are adjusted R ,2

pMallows’ C  statistic, R  , RSS (residual sum of squares) and RMS (residual2

mean square).  Actually, R  and RSS are equivalent in the sense that they2

will produce the same orderings of the models.  Adjusted R  and RMS are2

equivalent to one another in the same sense.  It’s generally best to use the

padjusted R   (or RMS) and Mallows’ C  for model selection.  R  is useful2 2

for comparing models with the same number of independent variables in
them, but the adjusted R  will produce the same ordering of the models. 2

The advantages of adjusted R  over the unadjusted R  are discussed in the2 2

previous section.  There are lots of good references on the use of adjusted

pR  and Mallows’ C  in model selection, such as Weisberg (1985), Chatterjee2

and Price (1991), Daniel and Wood (1971), and Snedecor and Cochran
(1980, p. 358).

The job isn’t over when you’ve found the best model, as indicated by the

padjusted R  or C  statistic.  Particularly in the case of cause-effect modeling,2

it will be of interest to examine whether all of the independent variables are
significant (use the p-values from the coefficient table).  No analysis is
complete without an examination of the residuals.  As a minimum, do the
standardized residuals show any trend when plotted against the dependent
variable?  If they do, the model is not adequate.  

The Normal Probability Plot is valuable for examining whether the
assumption of normally distributed errors has been violated.  If the errors
are not normally distributed, the significance tests may be invalid.  It’s also
a good idea to look at the correlations among the independent variables. 
High correlations may suggest problems with collinearity.  If this is the
case, the Eigenvalues-Principal Components procedure may be useful.
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Computation-

al Notes

The core computations are performed using Gentleman’s square root free
modification of Givens’ method (Seber 1977).  This is one of the most
accurate methods available.  An interesting feature of the method is that it
exploits sparseness (zeros) in the independent variables to reduce
computation time.  It’s therefore well suited for performing analyses of
(co)variance that involve indicator variables.

The error variance is estimated as σ*  = RMS, where RMS is the residual2

mean square from the regression.  Let X be the design matrix containing all
the cases used to find the coefficient estimates B*.  The estimated variance
of B* is V(B*)= σ*  (X UX) , where U is the weight matrix if weights2 T -1

were used, and U = I otherwise.  Suppose x  is a specific row of X, a caseT

used for estimation.  The fitted value f corresponding to case x  is f = x B*. T

The estimated variance of a fitted value is then V(f) = σ*  x (X UX) x.  2 T T -1

Now assume x wasn’t used for estimation.  The corresponding predicted
value is p = x B*.  If a weight is not specified, the prediction is for a singleT

future observation, which has estimated variance V(p) = σ*  + V(f).  If there2

is a weight w, then the prediction is for a mean of w future observations,
which has estimated variance V(p) = σ* /w + V(f).  Let SE(f) and SE(p) be2

the square roots of V(f) and V(p), respectively.  Then, the confidence
interval for the fitted value f and the prediction interval for the predicted
value p are given respectively as f ± SE(f) t and p ± SE(p) t, where t is the
appropriate t value for the specified coverage.

If x is used for estimation, leverage is computed as u x (X UX) x, where uT T -1

is the scalar weight associated with case x.  If x wasn’t used for estimation,
the “leverage” (unusualness) is x (X UX) x.  Let y be an observed value ofT T -1

the dependent variable (it may or may not have been used for estimation). 
A residual is computed as y - f, and a predicted residual is computed as y -
p.  An outlier t value for a case not used for estimation is (y - p) / SE(p).
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Best Subset Regressions

Specification

The Best Subset Regressions procedure in Statistix computes the best
subset regression models given a full model that contains all the potential
predictor variables of interest.  A specified number of subset models with
the highest R  are listed for each model size.2

First select the name of the dependent variable (response variable). 
Highlight a variable in the Variables box, then press the right-arrow button
next to the Dependent Variable box to move the highlighted variable into
that box.

Move candidate independent variables to the Non-forced Indep. Variables
list box.  These variables will be used in all possible combinations to form
the subset regressions. 

You can select one or more variables to be forced in the regression models. 
Forced variables will appear in all of the subset models.  Listing some
independent variables known to be important can greatly reduce the number
of subset models computed.  Move the variables you want forced in all
models from the Variables list to the Forced Indep. Variables list.

To perform weighted least squares regression, select the name of the
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CASE     HEAT    CHEM1    CHEM2    CHEM3    CHEM4

   1     78.5        7       26        6       60

   2     74.3        1       29       15       52

   3    104.3       11       56        8       20

   4     87.6       11       31        8       47

   5     95.9        7       52        6       33

   6    109.2       11       55        9       22

   7    102.7        3       71       17        6

   8     72.5        1       31       22       44

   9     93.1        2       54       18       22

  10    115.9       21       47        4       26

  11     83.8        1       40       23       34

  12    113.3       11       66        9       12

  13    109.4       10       68        8       12

variable containing the weights and move it to the Weight Variable box. 

Use the Fit Constant check box to specify a model with a constant fitted
(checked) or a model forced through the origin (not checked). 

Enter the number of best candidate models you want listed in the results for
each subset model size in the Models/Model Size edit control.  You can
specify as many as ten models, but this will be reduced for very large full
models to limit the total number of subset models listed to 150.

Data

Restrictions

Example

Up to a total of 50 forced and unforced independent variables can be includ-
ed in the model (15 is a more practical limit for the number of unforced
variables because of computation time).  If any values are missing for a case
in the full model, the entire case is ignored (listwise deletion) for all
models.  If an independent variable is too highly correlated with a linear
combination of other independent variables in the full model (collinearity),
it’s dropped from the model.  Computation is reinitiated with a new full
model in which the offending independent variable has been dropped.  If
collinearity still exists, another variable will be dropped.  Variables are
dropped until such collinearity has been eliminated and reliable
computations can proceed.  If weighted regression is specified, the variable
used for the weights cannot have negative values.  Zero weights are treated
as missing values.

Our example data are the Hald data from Draper and Smith (1966).  The
variable HEAT is the cumulative heat of hardening for cement after 180
days.  The variables CHEM1, CHEM2, CHEM3, and CHEM4 are the
percentages of four chemical compounds measured in batches of cement. 
The data are listed below.
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Best Subset Regression Models for HEAT  Cumulative Heat of Hardening For Cement

Unforced Independent Variables: (A)CHEM1 (B)CHEM2 (C)CHEM3 (D)CHEM4 
3 "best" models from each subset size listed.

            Adjusted

 P      CP  R Square   R Square     Resid SS   Model Variables

 1   442.9    0.0000     0.0000      2715.76   Intercept Only
 2   138.7    0.6450     0.6745      883.867   D
 2   142.5    0.6359     0.6663      906.336   B
 2   202.5    0.4916     0.5339      1265.69   A
 3     2.7    0.9744     0.9787      57.9045   A B
 3     5.5    0.9670     0.9725      74.7621   A D
 3    22.4    0.9223     0.9353      175.738   C D
 4     3.0    0.9764     0.9823      47.9727   A B D
 4     3.0    0.9764     0.9823      48.1106   A B C
 4     3.5    0.9750     0.9813      50.8361   A C D
 5     5.0    0.9736     0.9824      47.8636   A B C D

Cases Included 13    Missing Cases 0

The goal is to relate the heat of hardening to the chemical composition.  The
analysis is specified in the dialog box on the preceding page.  The results
are presented in the table below.

pMallows’ C  statistic, unadjusted and adjusted R , and residual sums of2

squares are produced for each model.  More detail on these statistics is
given in Linear Regression under Miscellaneous Regression Topics (page
185).

Note: The number of possible subset models grows rapidly as the number
of independent variables is increased.  If there are M independent variables,
then there are 2  - 1 subset models.  For example, with 10 independentM

variables there are 1023 subset models, while with 15 independent variables
there are 32,767 subset models.

Computation-

al Notes

The method used to generate subset statistics is patterned after Clarke
(1981).  An advantage of this method is that it’s very accurate without
requiring extended precision computing.  The first regression based on the
full model is performed with the method described in Linear Regression.
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Stepwise Linear Regression

Specification

The Stepwise Linear Regression procedure in Statistix performs stepwise
linear regression.  You can specify an empty initial model (forward
selection), a full initial model (backward elimination), or any initial model
in between.  Stepwise procedures are popular methods of searching for good
subset models, particularly when the number of independent models is
large.  (See also Best Subset Regressions on page 189.)

First select the name of the dependent variable (response variable). 
Highlight a variable in the Variables box, then press the right-arrow button
next to the Dependent Variable box to move the highlighted variable into
that box.

Divide your independent variables between the list boxes for Forced,
Starting, and Non-forced Indep. Vars.  Forced variables will appear in all
steps of the stepwise procedure and will not be eliminated regardless of the
elimination criteria.  The starting independent variables will appear in the
initial model and may be eliminated in subsequent steps.  The non-forced
independent variables don’t appear in the initial model but will be
considered for selection.  
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For forward selection, move all your independent variables to the Non-
forced Indep. Vars box.  For backwards selection, move all the independent
variables to the Starting Indep. Vars box.  You can also use the Starting
Indep. Vars box to enter an initial model that you have previously found of
interest or an initial model that includes a variable that was overlooked in a
previous stepwise regression.

A stepwise regression builds a regression model by repeating a process that
adds and deletes variables from a list of candidate variables.  The stepwise
process stops when no variables not already in the model meet the selection
criterion and no variables in the model meet the elimination criterion.  

At each step in the process, the variable with the lowest p-value is selected
to enter the model next.  A variable will not be selected unless its p-value is
less than the value you enter for the P To Enter criterion.  A variable’s p-
value tests the hypothesis that the variables’ regression coefficient is zero. 
You can specify pure backward elimination by entering 0.0 for the P To
Enter criterion to prevent eliminated variables from reentering the model.

The variable with the highest p-value is eliminated from the model at each
step.  A variable won’t be eliminated unless its p-value is greater than the
value you enter for the P To Exit criterion.  You can specify pure forward
selection by entering 1.0 for the P To Exit criterion to prevent selected
variables from being eliminated later.

The remaining options let you choose between brief and full report formats,
select a weight variable for weighted regression, and specify a model forced
through the origin.

Data

Restrictions

Example

Up to 50 independent variables can be included in the model.  If any values
are missing for a case in the full model, the entire case is ignored (listwise
deletion) for all models.  If weighted regression is specified, the variable
used for the weights can’t have negative values.  Zero weights are treated as
missing values.  Variables won’t be selected that are found to be too highly
correlated with variables already in the model (collinearity).

The data used in our example is the Hald data set from Draper and Smith
(1966).  The variable HEAT is the cumulative heat of hardening for cement
after 180 days.  The variables CHEM1, CHEM2, CHEM3, and CHEM4 are
the percentages of four chemical compounds measured in batches of
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CASE     HEAT    CHEM1    CHEM2    CHEM3    CHEM4

   1     78.5        7       26        6       60

   2     74.3        1       29       15       52

   3    104.3       11       56        8       20

   4     87.6       11       31        8       47

   5     95.9        7       52        6       33

   6    109.2       11       55        9       22

   7    102.7        3       71       17        6

   8     72.5        1       31       22       44

   9     93.1        2       54       18       22

  10    115.9       21       47        4       26

  11     83.8        1       40       23       34

  12    113.3       11       66        9       12

  13    109.4       10       68        8       12

cement.  The data are listed below.

The goal is to relate the heat of hardening to the chemical composition.  The
analysis is specified in the dialog box on page 192.  The results are as
follows:

The first part of the report is a history of the stepwise process.  It lists the
variables in the model for each step and presents a number of model
statistics.  In the example above, the intercept-only model is listed as step 1. 
CHEM4 is added at step 2, CHEM1 is added at step 3, CHEM2 is added at
step 4, and then CHEM4 is eliminated at step 5.  The R  and mean square2

error (MSE) are listed for each step.  The number in the P column at each
step is the p-value for the selected variable (+) or the eliminated variable (-).

Stepwise Linear Regression of HEAT

Unforced Variables: CHEM1 CHEM2 CHEM3 CHEM4 
  P to Enter 0.0600
  P to Exit  0.0600

                                      C C C C

                                      H H H H

                                      E E E E

                                      M M M M

Step     R Sq         MSE        P    1 2 3 4

   1   0.0000     226.314             . . . .
   2   0.6745     80.3515   0.0006 +  . . . D
   3   0.9725     7.47621   0.0000 +  A . . D
   4   0.9823     5.33030   0.0517 +  A B . D
   5   0.9787     5.79045   0.2054 -  A B . .

Resulting Stepwise Model

Variable    Coefficient   Std Error         T         P      VIF

Constant        52.5773     2.28617     23.00    0.0000
CHEM1           1.46831     0.12130     12.10    0.0000      1.1
CHEM2           0.66225     0.04585     14.44    0.0000      1.1

Cases Included   13       R Squared  0.9787       MSE   5.79045
Missing Cases     0       Adj R SQ   0.9744       SD    2.40634

Variables Not in the Model

              Correlations

Variable   Multiple   Partial        T         P

CHEM3        0.8257    0.4113     1.35    0.2089
CHEM4        0.9732   -0.4141    -1.37    0.2054
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At the end of the stepwise history, a complete coefficient table and model
summary statistics are presented for the final model.

The final table in the report lists the variables not in the final model.  It lists
the multiple and partial correlations of each variable with the final model. 
The T and P columns list the t value and p-value for each variable were it to
be added to the final model.

The full report lists a complete coefficient table for each step.  The example
below displays a full format report for the backward elimination stepwise
regression for the Hald data.

Stepwise Linear Regression of HEAT

Unforced Variables: CHEM1 CHEM2 CHEM3 CHEM4 
  P to Enter 0.0500
  P to Exit  0.0500

Step   Variable   Coefficient         T         P      R SQ         MSE

   1   Constant       62.4054      0.89              0.9824     5.98295
       CHEM1          1.55110      2.08    0.0708
       CHEM2          0.51017      0.70    0.5009
       CHEM3          0.10191      0.14    0.8959
       CHEM4         -0.14406     -0.20    0.8441

   2   Constant       71.6483      5.07              0.9823     5.33030
       CHEM1          1.45194     12.41    0.0000
       CHEM2          0.41611      2.24    0.0517
       CHEM4         -0.23654     -1.37    0.2054

   3   Constant       52.5773     23.00              0.9787     5.79045
       CHEM1          1.46831     12.10    0.0000
       CHEM2          0.66225     14.44    0.0000

Resulting Stepwise Model

Variable    Coefficient   Std Error         T         P      VIF

Constant        52.5773     2.28617     23.00    0.0000
CHEM1           1.46831     0.12130     12.10    0.0000      1.1
CHEM2           0.66225     0.04585     14.44    0.0000      1.1

Cases Included   13       R Squared  0.9787       MSE   5.79045
Missing Cases     0       Adj R SQ   0.9744       SD    2.40634

Variables Not in the Model

              Correlations

Variable   Multiple   Partial        T         P

CHEM3        0.8257    0.4113     1.35    0.2089
CHEM4        0.9732   -0.4141    -1.37    0.2054
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Logistic Regression

The Logistic Regression procedure is used when you are interested in
studying how observed proportions or rates depend on particular
independent variables.  A direct application of linear regression to
proportions is often not satisfactory because the fitted or predicted values
may be less than 0 or greater than 1 (impossibilities for proportions).  There
may be other shortcomings as well.  Logistic regression provides a
convenient alternative by examining the relationships between the logistic
transformation of the proportions and linear combinations of the predictor
(independent) variables.  The estimation method is maximum likelihood. 
Numerous model diagnostic options are available.  

More background on logistic regression can be found in the section titled
Additional Background on Logistic and Poisson Regression on page 211.  In
particular, you should be familiar with likelihood ratio tests (also known as
analysis of deviance tests or G  tests) to make full use of this procedure.2

Specification

Select the name of the dependent variable in the Variables list box and
move it to the Dependent Variable box.  

If each case in your data represents a single observation, the dependent
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variable contains only zeros and ones, and the Trials/Case Variable is not
used.  If some or all of the cases in your data represent more than a single
observation, then the dependent variable contains the sum of the zeros and
ones for all trials for each case, and the Trials/Case Variable stores the total
number of trials for each case.  When a Trials/Case Variable is used, the
logistic regression is computed on the ratio of the Dependent Variable to the
Trials/Case Variable.  This feature is used when indicator variables are used
for the independent variables and trials can be grouped by unique
combinations of values for the independent variables. 

Move the independent variables from the Variables list box to the
Independent Variables box.  For weighted regression, move the variable
containing the prior case weights to the Weight Variable box.

In some circumstances, the regression coefficient for a term in the model is
known beforehand.  Such a term is called an offset and can be “adjusted
out” of the model.  The Offset Variable is subtracted from the linear
predictor, so the offset variable must be expressed on the linear predictor’s
scale (logit scale).

Use the Fit Constant check box to have the constant fitted in the model
(checked) or have the model forced through the origin (not checked). 

Logistic regression uses an iterative procedure (iterative reweighted least
squares) to obtain its maximum likelihood results.  You specify the
maximum number of iterations performed before the procedure “gives up”
if it hasn’t converged in the Maximum Iterations edit control.

Iteration stops when the absolute change in the deviance between iterations
is less than the deviance convergence criterion you specify in the
Convergence Criterion edit control.  Small values increase the estimation
accuracy but may increase the number of required iterations.  The value of
0.01 is usually suitable for obtaining deviances and coefficient estimates.  

Data

Restrictions

Up to 50 independent variables can be included in the model.  If any values
within a case are missing, the case is dropped (listwise deletion).  If an
independent variable is too highly correlated with a linear combination of
other independent variables in the model (collinearity), it’s dropped from
the model.  Computation is reinitiated with a new model in which the
offending independent variable has been dropped.  Variables are dropped
until such collinearity has been eliminated and reliable computations can
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proceed.  For each case, the ratio of the dependent variable to the number of
trials (success/trials) must always be bounded by 0 to 1.  If weighted
regression is specified, the weight variable cannot contain negative weights. 
Zero weights are treated as missing values.

Example The logit transformation is ln(p/(1-p)), where p is a proportion.  The ratio
p/(1-p) is often interpreted as “odds”; for example, if p is the probability of
success, then 1-p is the probability of failure and p/(1-p) is the odds for
success.  By relating ln(p/(1-p)) to a linear combination of predictors, we
are assuming that the predictors act in a multiplicative fashion to influence
the odds p/(1-p).  Remember that logistic regression is relating the linear
combination of predictors to ln(p/(1-p)) and not to p, as the analysis
specification may suggest.

Finney’s data from Pregibon (1981) are used for this example.  The
response was whether or not vasoconstriction occurred in the skin of the
digits; variable OCCUR takes the values 1 or 0.  There are two quantitative
predictor variables—the rate and volume of air inspired by the subject.  For
analysis, log rate and log volume were used, variables LRATE and LVOL,
respectively.  The data are displayed below, and is available in the file
Sample Data\ vasoconstriction.sx.

The data are said to be ungrouped; each case is based on a single trial, so
the Trials/Case Variable is left empty.  The logistic regression is specified
on page 196.  

Convergence is reached after the fifth iteration, and the coefficient table is

CASE  OCCUR    LRATE     LVOL

   1      1  -0.1924   1.3083

   2      1   0.0862   1.2528

   3      1   0.9163   0.2231

   4      1   0.4055  -0.2877

   5      1   1.1632  -0.2231

   6      1   1.2528  -0.3567

   7      0  -0.2877  -0.5108

   8      0   0.5306   0.0953

   9      0  -0.2877  -0.1054

  10      0  -0.7985  -0.1054

  11      0  -0.5621  -0.2231

  12      0   1.0116  -0.5978

  13      0   1.0986  -0.5108

  14      1   0.8459   0.3365

  15      1   1.3218  -0.2877

  16      1   0.4947   0.8329

  17      1   0.4700   1.1632

  18      1   0.3471  -0.1625

  19      0   0.0583   0.5306

  20      1   0.5878   0.5878

CASE  OCCUR    LRATE     LVOL

  21      0   0.6931  -0.9163

  22      0   0.3075  -0.0513

  23      0   0.3001   0.3001

  24      0   0.3075   0.4055

  25      1   0.5766   0.4700

  26      0   0.4055  -0.5108

  27      1   0.4055   0.5878

  28      0   0.6419  -0.0513

  29      1  -0.0513   0.6419

  30      0  -0.9163   0.4700

  31      1  -0.2877   0.9933

  32      0  -3.5066   0.8544

  33      0   0.6043   0.0953

  34      1   0.7885   0.0953

  35      1   0.6931   0.1823

  36      1   1.2030  -0.2231

  37      0   0.6419  -0.0513

  38      0   0.6419  -0.2877

  39      1   0.4855   0.2624
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Unweighted Logistic Regression of OCCUR  

Predictor

Variables   Coefficient   Std Error   Coef/SE         P

Constant       -2.87494     1.30650     -2.20    0.0278
LRATE           4.56100     1.81790      2.51    0.0121
LVOL            5.17862     1.84314      2.81    0.0050

Deviance                29.23
P-Value                0.7807
Degrees of Freedom         36

Convergence criterion of 0.01 met after 5 iterations

Cases Included 39    Missing Cases 0

Model Deviance Difference DF Component P-Value

I I IVRI d   =54.04 d -d  =24.81  2 V and R  0.000

IR R IRVI+R d  =48.86 dI -d =19.63  1 V  0.000

IV IV IRVI+V d  =47.06 d -d =17.83  1 R  0.000

IRVI+R+V d =29.23

displayed as follows:

The p-value of 0.7807 suggests this model fits the data fairly well.  

Maybe it’s not necessary to include both terms LVOL and LRATE in the
model.  When we run the analysis using only LRATE, we find that the
deviance is 48.86 (p=0.0918).  When LVOL is specified alone, the resulting
deviance is 47.06 (p=0.1243).  When we run the analysis with no
independent variables, the resulting deviance is 54.04 (p=0.0440).

The following analysis of deviance table summarizes the results
(I = intercept, R = log rate, V = log volume):

The column labeled Component shows which terms are being tested.  The
first row tests whether LVOL and LRATE improve the intercept-only
model.  The deviance for this test is the difference of the deviances for
model I and model I+R+V, which is 54.04 - 29.23 = 24.81.  The associated
value for the degrees of freedom is the difference in the number of
independent variables in the two models.  The p-value displayed in the last
column is computed using the chi-square function in Probability Functions
(see Chapter 13).  The second row tests whether LVOL improves the model
when I and LRATE are already in the model.  The deviance for this test is
the difference of the deviances for model I+R and model I+R+V, which is
48.86 - 29.23 = 19.63.  The LRATE term is tested in a similar manner in the
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third row.  The conclusion from this analysis of deviance table is that both
LVOL and LRATE are needed in the model.

Before accepting this model, you should examine the regression
diagnostics.  You should examine the standardized residuals and Cook’s D
(or p-value) routinely.

Logistic

Regression

Results Menu

Once the regression analysis is computed and displayed, a Results pull-
down menu appears on the menu at the top of the Statistix window.  Click
on the Results menu to display the regression results menu displayed below.

Select Coefficient Table from the menu to redisplay the regression
coefficient table.  Select Options to return to the main dialog box used to
specify the model.  Like the Linear Regression procedure, Logistic
regression offers the options of saving various residual- and model-
diagnostic statistics (see page 176) and examining the variance-covariance
matrix of the regression coefficients (see page 185).  The remaining options
are discussed below.

Classification

Table

The classification table is a 2x2 frequency table of actual and predicted
responses: The fitted logistic regression model is used to obtain the
estimated value of p for each case.  According as the estimated value of p is
less that 0.5 or greater than 0.5, the case is placed in the category 0 or 1.  By
then cumulating over cases, the classification table is obtained.  The
classification table for Finney’s vasoconstriction data is shown on the next
page.
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Classification Table for OCCUR

             Predictions
Actual        0        1    Total
     0       14        5       19
     1        2       18       20
 TOTAL       16       23       39

Proportion of category 0 correctly classified  0.737
Proportion of category 1 correctly classified  0.900
Overall proportion correctly classified        0.821

Hosmer-Lemeshow Goodness of Fit Tests for LOW

                                   Decile of Risk

              1     2     3     4     5     6     7     8     9    10

LOW          0.07  0.09  0.16  0.21  0.28  0.33  0.42  0.49  0.61  0.94  Total

----------+-------------------------------------------------------------+-----
1     Obs |   0     1     4     2     6     6     6    10     9    15   |   59
      Exp |   0.9   1.6   2.4   3.5   5.0   5.6   6.8   8.6  10.5  14.1 |   59
0     Obs |  19    18    15    17    14    12    12     9    10     4   |  130
      Exp |  18.1  17.4  16.6  15.5  15.0  12.4  11.2  10.4   8.5   4.9 |  130
----------+-------------------------------------------------------------+-----
    Total |  19    19    19    19    20    18    18    19    19    19   |  189

Hosmer-Lemeshow Statistic (C)     4.78
P-Value                         0.7804
Degrees of Freedom                   8

                                   Fixed Cut Points

LOW          0.10  0.20  0.30  0.40  0.50  0.60  0.70  0.80  0.90  1.00  Total

----------+-------------------------------------------------------------+-----
1     Obs |   2     5     8     9    11     9     7     5     2     1   |   59
      Exp |   2.7   4.5   8.3   8.7  10.7   8.8   6.5   5.3   1.7   1.9 |   59
0     Obs |  38    25    25    16    13     7     3     2     0     1   |  130
      Exp |  37.3  25.5  24.7  16.3  13.3   7.2   3.5   1.7   0.3   0.1 |  130
----------+-------------------------------------------------------------+-----
    Total |  40    30    33    25    24    16    10     7     2     2   |  189

Hosmer-Lemeshow Statistic (H)     6.17
P-Value                         0.6281
Degrees of Freedom                   8

Hosmer-

Lemeshow

Statistic

The Hosmer-Lemeshow statistics are goodness-of-fit tests suitable for
models with a large number of covariate patterns (unique combinations of
values for the independent variables).  These tests are illustrated here using
data from Hosmer and Lemeshow (1989, p. 92), a study whose object was
to identify risk factors for low birth weights of babies (the data are available
in the file Sample Data\birthwt.sx).  The response variable is LOW: 0 =
normal birth weight, 1 = low birth weight.  The table below shows the tests
for the model found on page 101, Hosmer and Lemeshow.

The tables are constructed by grouping the observations into ten groups
based on the values of the fitted values (estimated probabilities).  Two
grouping methods are used as follows:  
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Logistic Regression Odds Ratios for LOW

Predictor     95% C.I.                   95% C.I.

Variables   Lower Limit   Odds Ratio   Upper Limit

AGE             0.91         0.97          1.05
LWT             0.97         0.98          1.00
RACE1           1.26         3.54          9.91
RACE2           1.00         2.37          5.59
SMOKE           1.15         2.52          5.51
PTL             0.87         1.72          3.39
HT              1.62         6.26         24.23
UI              0.87         2.14          5.25

The first method groups the data based on percentiles of the fitted values,
resulting in a table with ten “deciles of risk”.  The test statistic C = 4.78 is
computed from the observed and expected frequencies within each decile of
risk for each outcome.  The p-value 0.7804 is computed from the chi-square
distribution with 8 degrees of freedom.  

The values above each of the columns in the deciles-of-risk table represent
the highest fitted value for the column.  Observations with the same
covariate pattern are forced into the same decile, which can result in some
columns with zero observed frequencies.  In these cases, the statistic isn’t
computed.

The second grouping method bases the groups on fixed cut points of the
fitted values.  Both the C and H statistics indicate a good fit.  See Hosmer
and Lemeshow (1989) for a detailed discussion.

Odds Ratios Select Odds Ratios from the results menu to obtain odds ratios and 95%
confidence intervals.  The table of odds ratios from the logistic regression
of the birth weight data from Hosmer and Lemeshow (1989, p. 94) is
presented below. 

The odds ratios reported in Statistix give the change in the odds for an
increase in one unit of the independent variable.  For the dichotomous
variable SMOKE, the odds of a low birth weight baby are 2.52 greater for a
mother who smokes (SMOKE = 1) than for a mother who doesn’t smoke
(SMOKE = 0).  The odds ratio of 0.97 for the continuous variable AGE is
for an increase of one year in age.

General Notes If fitted values are saved, the resulting values are the estimates of expected
number of successes E[N].  If you want estimates of p, first save the fitted
values and then divide them by the total number of trials per case. 
Estimates for the logits ln(p/(1-p)) can be obtained from the estimated p’s.  
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Probit regression is a method very similar to logistic regression.  Statistix
does not perform probit regression.  For the vast majority of data sets,
logistic and probit analyses will return virtually identical results.  We prefer
logistic regression because it can be calculated more efficiently and the
logit transform has a simple interpretation as the log of the odds ratio.

Stepwise Logistic Regression

This procedure performs stepwise logistic regression.  Logistic regression is
appropriate for dependent variables that are proportions.  Both forward
selection and backward elimination are supported.

Specification

Select the name of the dependent variable in the Variables list box and
move it to the Dependent Variable box.  

If each case in your data represents a single observation, the dependent
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variable contains only zeros and ones, and the Trials/Case Variable is not
used.  If some or all of the cases in your data represent more than a single
observation, then the dependent variable contains the sum of the zeros and
ones for all trials for each case, and the Trials/Case Variable stores the total
number of trials for each case. 

Divide your independent variables between the list boxes for Forced,
Starting, and Non-forced Indep. Vars.  Forced variables will appear in all
steps of the stepwise procedure and will not be eliminated regardless of the
elimination criteria.  The starting independent variables will appear in the
initial model and may be eliminated in subsequent steps.  The non-forced
independent variables don’t appear in the initial model but will be
considered for selection.  

For forward selection, move all your independent variables to the Non-
forced Indep. Vars box.  For backwards selection, move all the independent
variables to the Starting Indep. Vars box.  You can also use the Starting
Indep. Vars box to enter an initial model that you have previously found of
interest or an initial model that includes a variable that was overlooked in a
previous stepwise regression.

A stepwise regression builds a regression model by repeating a process that
adds and deletes variables from a list of candidate variables.  The stepwise
process stops when no variables not already in the model meet the selection
criterion and no variables in the model meet the elimination criterion.

At each step in the process, the variable whose addition decreases the
deviance the greatest is selected to enter the model next.  A variable will not
be selected unless the p-value for the deviance test (the difference of the
deviance for the model excluding the candidate variable and the deviance of
the model including the candidate variable) is less than the value you enter
for the P To Enter criterion.  You can specify pure backward elimination by
entering 0.0 for the P To Enter criterion to prevent eliminated variables
from reentering the model.

The variable whose removal from the model increases the deviance the least
is eliminated from the model at each step.  A variable won’t be eliminated
unless the p-value for the deviance test is greater than the value you enter
for the P To Exit criterion.  You can specify pure forward selection by
entering 1.0 for the P To Exit criterion to prevent selected variables from
being eliminated later.
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Stepwise Logistic Regression of OCCUR  

Unforced Variables: LRATE LVOL 
  P to Enter 0.0500
  P to Exit  0.0500

Step  Variable   Coefficient  Std Error  Coef/SE  Deviance  Difference      P

   1  Constant       0.05129    0.32036     0.16     54.04

   2  Constant      -0.20458    0.36232    -0.56     47.06      6.98   0.0082
      LVOL           1.80788    0.77024     2.35

   3  Constant      -2.87494    1.30650    -2.20     29.23     17.83   0.0000
      LVOL           5.17862    1.84314     2.81
      LRATE          4.56100    1.81790     2.51

Resulting Stepwise Model

Variable    Coefficient   Std Error   Coef/SE         P

Constant       -2.87494     1.30650     -2.20    0.0278
LVOL            5.17862     1.84314      2.81    0.0050
LRATE           4.56100     1.81790      2.51    0.0121

Deviance                29.23
P-Value                0.7807
Degrees of Freedom         36

Cases Included 39    Missing Cases 0

In some circumstances, the regression coefficient for a term in the model is
known beforehand.  Such a term is called an offset and can be “adjusted
out” of the model.  The Offset Variable is subtracted from the linear
predictor, so the offset variable must be expressed on the linear predictor’s
scale (logit scale).

The remaining options let you choose between brief and full report formats,
select a weight variable for weighted regression, specify a model forced
through the origin, specify the maximum number of iterations, and enter a
value for the convergence criterion.

Data

Restrictions

A total of 50 independent variables can be included in the model.  If any
values within a case are missing, the case is dropped (listwise deletion). 
For each case, the ratio of the dependent variable to the number of trials
(success/trials) must always be bounded by 0 to 1.

Example We’ll use Finney’s vasoconstriction data described on page 198 to illustrate
forward selection.  The dependent variable, OCCUR, is coded 1 if vaso-
constriction occurred in the skin and 0 if not.  There are two candidate
independent variables, LRATE and LVOL.  The analysis is specified on
page 203.  The results are displayed below.
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Three steps were made in arriving at the final model.  Because no starting
variables were specified, the model in the first step was the intercept-only
model.  The variable LVOL was added in step 2.  The difference of the
deviances for the models in step 1 and 2 is 6.98 (p=0.0082).  The variable
LRATE was added in step 3.  The complete coefficient table and model
statistics for the final model are listed at the end of the report.

Computation-

al Notes

See Hosmer and Lemeshow (1989) for a description of the stepwise
algorithm and the deviance test.  More background on logistic regression
can be found in the section titled Additional Background on Logistic and
Poisson Regression on page 211. 

Poisson Regression

The Poisson Regression procedure performs Poisson regression using the
maximum likelihood estimation method.  It’s used when you’re interested in
examining how observed counts depend on particular independent
variables.  A direct application of linear regression to counts often isn’t
satisfactory because the fitted or predicted values may be negative; this is
impossible for counts.  There may be other shortcomings as well.  Poisson
regression provides a convenient alternative.  It examines the relationships
between the log transformed counts and linear combinations of the predictor
(independent) variables.  

More background on Poisson regression can be found in Additional Back-
ground on Logistic and Poisson Regression on page 211.  In particular, you
should be familiar with likelihood ratio tests (also known as analysis of
deviance tests or G2 tests) to make full use of this procedure.

Specification A sample Poisson Regression dialog box appears on the next page.  Move
the dependent variable to the Dependent Variable box and the independent
variables to the Independent Variables box.  As with Linear Regression,
you can specify a Weight Variable for prior case weights and force the
model through the origin (uncheck the Fit Constant check box).
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In some circumstances, the regression coefficient for a term in the model is
known beforehand.  Such a term is called an offset, and the offset option
allows it to be “adjusted out” of the model.  The offset variable is subtracted
from the linear predictor, so the Offset Variable must be expressed on the
linear predictor’s scale (i.e., natural log of counts).

Poisson regression uses an iterative procedure (iterative reweighted least
squares) to obtain the maximum likelihood estimates.  You can specify the
Maximum Iterations performed before the procedure “gives up” if it hasn’t
converged.

Iteration stops when the absolute change in the deviance between iterations
reaches the deviance Convergence Criterion.  Decreasing the criterion will
increase the estimation accuracy but may increase the number of iterations
required.  The default value of 0.01 is usually suitable for obtaining
deviances and coefficient estimates.  Decreasing the criterion appears to
improve the accuracy of coefficient standard errors and the regression
diagnostics.

Data

Restrictions

Up to 50 independent variables can be included in the model.  If any values
within a case are missing, the case is dropped (listwise deletion).  If an
independent variable is too highly correlated with a linear combination of
other independent variables in the model (collinearity), it’s dropped from
the model.  Computation is reinitiated with a new model in which the
offending independent variable has been dropped.  Variables are dropped
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                             RATING       

Age group    AGE      4     3     2     1 

  5 -  7      1       7     3     4     7

  8 -  9      2      13    11    15    10

 10 - 11      3       7    11     9    23

 12 - 13      4      10    12     9    28

 14 - 15      5       3     4     5    32

until such collinearity has been eliminated and reliable computations can
proceed.  If a prior weight variable is specified, the weight variable cannot
contain negative weights.  Zero weights are treated as missing values.

Example Maxwell’s data, presented in Nelder and Wedderburn (1972), are used.  The
analysis treats a 5 x 4 contingency table giving the number of boys (BOYS)
with four different ratings for disturbed dreams in five different age
categories:

AGE has the values 1 - 5, and RATING the values 1 - 4.  We’re interested
in whether there’s a linear x linear interaction of AGE and RATING.

First we create indicator variables (dummy variables) for the main effects as
if we were using linear regression (see, for example, Weisberg 1985). 
There are 4 main effect degrees of freedom for AGE and 3 main effect
degrees of freedom for RATING.  The main effect indicator variables R1,
R2, and R3 for RATING are created using the Indicator Variables
procedure from the Data menu (discussed in Chapter 2):

The indicator variables A1, A2, A3, and A4 for AGE are created in a
similar manner.  The RATING X AGE interaction is computed using the
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CASE    BOYS     AGE  RATING   A1   A2   A3   A4   R1   R2   R3  RXA  DUMMYV

   1       7       1       4    0    0    0    0    0    0    0    4       0

   2       3       1       3    0    0    0    0    0    0    1    3       0

   3       4       1       2    0    0    0    0    0    1    0    2       0

   4       7       1       1    0    0    0    0    1    0    0    1       0

   5      13       2       4    1    0    0    0    0    0    0    8       0

   6      11       2       3    1    0    0    0    0    0    1    6       0

   7      15       2       2    1    0    0    0    0    1    0    4       0

   8      10       2       1    1    0    0    0    1    0    0    2       0

   9       7       3       4    0    1    0    0    0    0    0   12       0

  10      11       3       3    0    1    0    0    0    0    1    9       0

  11       9       3       2    0    1    0    0    0    1    0    6       0

  12      23       3       1    0    1    0    0    1    0    0    3       0

  13      10       4       4    0    0    1    0    0    0    0   16       0

  14      12       4       3    0    0    1    0    0    0    1   12       0

  15       9       4       2    0    0    1    0    0    1    0    8       0

  16      28       4       1    0    0    1    0    1    0    0    4       0

  17       3       5       4    0    0    0    1    0    0    0   20       0

  18       4       5       3    0    0    0    1    0    0    1   15       0

  19       5       5       2    0    0    0    1    0    1    0   10       0

  20      32       5       1    0    0    0    1    1    0    0    5       1

Unweighted Poisson Regression of BOYS  

Predictor

Variables   Coefficient   Std Error   Coef/SE         P

Constant        1.32623     0.26102      5.08    0.0000
R1              0.91629     0.18708      4.90    0.0000
R2              0.04879     0.22093      0.22    0.8252
R3              0.02469     0.22224      0.11    0.9115
A1              0.84730     0.26082      3.25    0.0012
A2              0.86750     0.26004      3.34    0.0008
A3              1.03302     0.25410      4.07    0.0000
A4              0.73967     0.26522      2.79    0.0053

Deviance                32.46
P-Value                0.0012
Degrees of Freedom         12

Convergence criterion of 0.01 met after 4 iterations

Cases Included 20    Missing Cases 0

Transformation:

  RXA = RATING ( AGE

The data are stored in the file Sample Data\dreams.sx, and are listed below.

We’ll fit two models—one without the interaction and one with the inter-
action.  The main effects only model is computed first.  The model is
specified in the dialog box on the preceding page.  The results are presented
in the coefficient table below.

The deviance for this model is 32.46 with 12 degrees of freedom; this main
effects only model appears to fit poorly (p = 0.0012).  

Next we fit the main effects plus linear interaction model by adding the
RXA term.  This model fits much better (deviance = 14.08, df = 11, p =
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0.2288).  The contribution to the deviance due to the interaction RXA is
32.46 - 14.08 = 18.38, which is clearly significant (it is treated as a chi-
square statistic with 1 df).  From the coefficient table, the estimated linear x
linear interaction is -0.2051.  Nelder and Wedderburn conclude “that the
data are adequately described by a negative linear x linear interaction
(indicating that the dream rating tends to decrease with age)”.

If we look at the regression diagnostics, Cook’s distance calls attention to
the cell in the lower right; the count in AGE = 5, RATING = 1 is a bit high,
and Cook’s distance indicates this is a rather influential case.  Let’s see
what happens when this point is fitted separately.  To do this, a new
variable is created using the Transformation:

  IF AGE=5 AND RATING=1 THEN DUMMYV = 1 ELSE DUMMYV = 0

When the model:  BOYS = R1 R2 R3 A1 A2 A3 A4 RXA DUMMYV is
fitted, the new deviance is 9.58 (10 degrees of freedom, p = 0.4781).  The
RXA interaction slope is now -0.13758.  The change in deviance due to the
DUMMYV term is 4.50 = 14.08 - 9.58, which can be treated as a chi-square
statistic with 1 df.  The p-value of 0.034 (from Probability Functions) is
small enough to make you suspect that the lower right corner does require
special attention.  This is not the definitive analysis of this data set; the
point is just to show the value of using the regression diagnostics to gain a
better understanding of the data.

We could have fitted the main effects only model a little easier using the
Log Linear Models procedure in Chapter 7.  Log Linear Models is
especially suited for fitting models with only qualitative predictors; the
drawback of using Poisson regression is that you must manually create the
indicator variables.  However, Log Linear Models can’t deal with
quantitative predictors and so, for example, they could not compute the
linear x linear interaction RXA.  Poisson regression must be used when you
need the standard errors of the coefficients.

Poisson

Regression

Results Menu

Once the regression analysis is computed and displayed, a Results pop-up
menu is added to the main menu at the top of the Statistix window.  Click
on the Results menu to display the regression results menu shown on the
next page. 
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Select Coefficient Table from the menu to redisplay the regression
coefficient table.  Select Options to return to the main dialog box used to
specify the model.  Poisson regression offers the options of saving various
residual- and model-diagnostic statistics and examining the variance-
covariance matrix of the regression coefficients.  These options are per-
formed in the same manner as in Linear Regression (pages 176 and 185).

General

Comments

By relating ln(Y) to a linear combination of predictors, we’re assuming that
the predictors act in a multiplicative fashion to influence the counts Y. 
Remember that Poisson regression is relating the linear combination of
predictors to ln(Y) and not Y, as the analysis specification might suggest.

Additional Background on 
Logistic and Poisson Regression

Analyzing

Proportions

and Counts

For those unfamiliar with logistic and Poisson regression, the following
sections give you a brief background on why and when these procedures
should be used.

The analysis of counts and proportions is the objective of discrete, or
categorical, data analysis.  The theory of analysis of variance and regression
is more mature than methods for discrete data analysis.  So it’s natural that
many of the techniques for discrete data analysis are based on ideas from
analysis of variance and regression.

The typical application of least squares procedures [analysis of (co)variance
or regression] usually involves the assumption that the dependent variable is
some quantity that can be measured on a continuous scale, such as
millimeters or grams.  It’s also usually assumed that the random errors in
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the dependent variable are independent normal  random variables with
identical variances, perhaps after suitable transformations or weightings. 
The goal of analysis, then, is to examine whether the dependent variable is
influenced by the independent variables of interest.

Problems arise when least squares is applied to data sets where the depen-
dent variable is discrete counts or proportions that arose from discrete
counts.  Suppose you were to fit a simple linear regression model p = a + bx
to a data set, where the p’s are proportions.  You can always find values of
x where p is less than 0 or greater than 1, a clearly undesirable situation for
a model of proportions.  Likewise, if you fit the model c = a + bx where
now c is discrete count data, you can find values of x that result in negative
predicted counts, also undesirable.

You can avoid these problems by transforming the dependent data.  For
example, when the data are proportions, the logistic transformation
ln [p/(1-p)] creates a new variable that ranges from -4 to +4.  With count
data, you can achieve a similar scaling by converting the data to the log
scale.  We are then interested in how a linear combination of the
independent variables is related to the transformed data.  This involves
estimating the slope coefficients and testing their significance.  However,
even after the data have been transformed, the usual application of least
squares for estimation often doesn’t work very well because the errors do
not closely approximate the usual assumption of identical variances.  

The application of least squares to transformed discrete data can be
improved by using various weighting schemes to adjust for unequal
variances.  A classic example of such a procedure is minimum logit C ,2

described in Snedecor and Cochran (1980).  These techniques should be
viewed as approximations to the preferred method of estimation, which is
maximum likelihood (ML) estimation.  These approximate methods work
well in some situations and poorly in others.  The appeal of the approximate
methods has been that they are easy to calculate with traditional methods.

Efficient general algorithms for ML estimation of linear models fitted to
transformed discrete data are now available and are part of a larger body of
theory known as generalized linear models, or GLM’s.  Statistix uses these
procedures to make it possible to perform ML estimation with no more
effort than required for a traditional least squares analysis.  If you have
count data, we suggest you use the appropriate ML procedure.  This may
require some background reading if you’re not familiar with ML
procedures, especially likelihood ratio tests.  If you understand how F tests
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are performed in the usual regression situation, likelihood ratio tests are
easy.  The ML procedures always work as well as the approximate weighted
least squares  procedures.  More important, the ML procedures will work
well in situations where least squares fails dismally.

If you’re interested in proportions, Logistic Regression is the appropriate
procedure.  If you have count data, consider either Poisson Regression or
Log-Linear Models.  If you have count data and your independent
variables include continuous variables (“covariates”), use Poisson
Regression.  More detail to help you decide which to use is found within
each of the respective descriptions.

There are many good references on discrete data analysis.  Bishop et al.
(1975) give a thorough treatment of discrete analysis for categorical
designs, the discrete analogs to analysis of variance.  Fienberg (1977) gives
a concise, readable account of such models.  McCullagh and Nelder (1983)
consider a broader class of models, including those with continuous
variates, the analogs to regression or analysis of covariance.  Cox (1970)
and Hosmer and Lemeshow (1989) are good references for the logistic
model.  The references in these books can direct you to more specific areas
of interest.

Generalized

Linear Models

The procedures for Logistic Regression and Poisson Regression are based
on the theory of generalized linear models (McCullagh and Nelder 1983), or
GLM’s.  The class of models included in GLM’s is quite rich; multiple,
logistic, and Poisson regression are the most commonly encountered
members of GLM’s, but many others are included.

Many of the statistics in linear regression have generalized analogs in
GLM’s.  A distinction is that many of the statistics for GLM’s in general 
are justified by large sample approximations, while the statistics for normal
theory linear regression are “exact”.  The performance of these approxima-
tions is an active field of investigation.

First we’ll discuss the statistics displayed on the coefficient table.  The
standard measure of GLM fit is the deviance, also known as the G  statistic. 2

Under the null hypothesis of the specified model, the deviance
asymptotically follows a chi-square distribution.  The deviance plays a role
similar to that of the residual error in linear regression.  You can think of it
as a “distance measure” between the fitted model and the actual data—the
smaller, the better.  When used as an overall goodness-of-fit measure, the
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corresponding p-value should be interpreted with caution; it is best viewed
as simply a convenient way to standardize the deviance for comparison
purposes.  A more traditional goodness-of-fit measure is Pearson’s chi-
square, which Statistix does not display (it’s easy to compute from residual
results if desired).  Pearson’s chi-square has the same asymptotic
distribution as the deviance (under the null hypothesis);  the reason for
preferring the deviance is that the deviance can be used to construct a
stepwise analysis of deviance table similar to the stepwise analysis of
variance table displayed in linear regression.  Pearson’s chi-square doesn’t
lend itself as readily to this use.

Stepwise analysis of variance tables and their uses are described in Linear
Regression.  Analogous analysis of deviance tables can be constructed for
Logistic and Poisson Regression (see examples).  Understanding the
construction and interpretation of such tables is essential to performing
regression analyses properly.  Statistix doesn’t automatically generate
analysis of deviance tables because the structure of these tables often
depends on the goals of the investigation imposed by the subject matter. 
However, such tables are easy to construct by hand from the displayed
results.

In addition to the model deviance, COEF/SE statistics and associated
p-values are displayed on the coefficient table.  Again, these are justified by
large sample theory.  Better tests for the individual contributions of
independent variables can be constructed as 1 degree of freedom tests using
the deviance (see examples).

Direct analogies exist for most of the residual diagnostics you can select
from the residuals and fitted values menu in linear regression.  The
computation of leverage is as described in McCullagh and Nelder (1983)
and Pregibon (1981).  The standardized residual, r, is described in
McCullagh and Nelder (eq. 11.1); we describe its calculation at the end of
this section on page 216.  Leverage values, h, are the diagonal elements of
the H matrix described by McCullagh and Nelder (sect. 11.3).  

If you’re interested in Pearson (chi-square) residuals rather than
standardized residuals, you can calculate them as r(1 - h)  using½

Transformations.  If you square the Pearson residuals and then sum them,
you’ll obtain the Pearson chi-square goodness-of-fit statistic for the model. 
Cook’s distance is computed as described in McCullagh and Nelder (1983)
and Pregibon (1981).  Computing the “p-value” for Cook’s D should simply
be regarded as converting D to an alternate scale that may help make
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influential points more easily recognizable.  The method for computing the
“p-value” of Cook’s D is the same as that used in linear regression.  The
outlier t-statistic and its p-value should be regarded as experimental; at this
point, a cautious interpretation of these statistics is that they are monotonic
transforms of the standardized residuals (Weisberg 1985) and should be
sensitive to outliers.

Aliasing Parameters being estimated are said to be aliased if the associated
independent variables are (nearly) linear combinations of other independent
variables.  Another name for this is collinearity.  As in linear regression,
aliased independent variables in logistic and Poisson regression are
successively detected and dropped until the remaining independent
variables constitute a linearly independent set.  

Some special considerations come into play when this variable-dropping
technique is used for logistic and Poisson regression.  The first is what is
called “saw-toothing”.  As the iterative fitting process used for GLM’s
proceeds, it occasionally happens that the information in a parameter
diminishes to the point that the procedure detects it as being aliased, even
though it really isn’t.  Saw-toothing can be recognized as occurring when a
variable is dropped sometime after the first fitting cycle, along with a
substantial increase in the deviance to the next cycle.  When this is
observed, the deviance from the cycle immediately before the one in which
the variable is dropped should be used.  

There is a related issue that you should be aware of.  This is the potential
interaction of dropping aliased variables and missing values.  A case is not
included in the analysis if any of the values for any of the variables
(dependent, independents, or weight) used in the analysis are missing
values.  Thus, if an independent variable with missing values is detected as
being aliased and is dropped, new cases may be pulled into the analysis in
the next cycle.  This makes use of all of the available data, but it also means
the deviance may be based on an expanded set of cases as iteration
continues and hence is not truly comparable from cycle to cycle.  This will
usually not be of concern, but it’s a point you need to know.  If this
behavior influences the results, it can be controlled by using Omit/Restore
Cases to select case subsets for analysis.
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Infinite

Parameter

Estimates

A potential problem with the logistic transformation occurs when the
estimate of p is very near to 0 or 1.  The fitted logit ln[p/(1-p)]  then
approaches minus or plus infinity, which can obviously cause computational
problems.  A similar problem occurs in Poisson regression when the fitted
count is very near 0; the fitted log count approaches minus infinity.  In these
cases, the parameter estimates in the linear predictors approach infinity. 
Statistix prevents potential computational problems in such cases by
enforcing an upper bound on the absolute value of the fitted values of the
linear predictors.

This approach appears to work quite well, and biases are generally small. 
However, when it’s known in advance that some parameter estimates are
infinite, it’s better to drop the corresponding data cases from the analysis. 
An example would be to delete all rows and columns in two-way contin-
gency tables that have marginal sums of zero.  The major negative conse-
quence of not deleting such cases is that the deviance may be distorted
downward relative to the degrees of freedom.

Equations for

Linear,

Logistic, and

Poisson

Regression

The following section outlines some of  the equations used for various
quantities in multiple, logistic, and Poisson regression.  The matrix X
represents the design matrix of predictor variable values.  The prior weights
are the weights specified by the weighting variable option.  RMS stands for
residual mean square.  In logistic regression, p is the expected proportion, or
E[p] (the expected logit is ln [p/(1-p)]).  The various terms are described in
more detail in McCullagh and Nelder (1983).  The number of cases used for
estimation is n.  The number of parameters in the linear model is m (m
includes the intercept, if present).

Description Linear Logistic Poisson

prior weight w w w

s = scale parameter σ 1 12

σ  = E[RMS]2

f = variance function 1 nπ(1 - π) M
π = E[p] M= expected count

q = iterative 
weight = fw w  nπ(1 - π)w Mw
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Description Linear Logistic Poisson

v = variance of an 
observation = sf/w σ /w  nπ(1 - π)/w M/w2

Let C = (X QX)T -1

variance of estimated coefficients V(B*) = sC

variance of a fitted value of the linear predictor  V(f) = sx CxT

  h = leverage = q x Cx T

(“unusualness” or “distance” is fx Cx)T

Let e = raw residual (observation minus fitted or predicted value)

Standardized residual = r = e[((sf) / w )(1 - h)]  -½

outlier t-statistic = r [(n - m - 1) / (n - m - r )]  2 -½ 

Cook’s D = (r  / m) (h / (1 - h))2

Two Stage Least Squares Regression

The Two Stage Least Squares Regression procedure (2SLS) is used to
estimate a linear equation when one or more of the predictor variables, or
right hand side variables, is an endogenous variable.  An endogenous
variable is one that is determined by the system of equations being solved. 
For example, quantity and price of a product are both endogenous variables
determined by a system of two simultaneous equations: the demand curve
and the supply curve.  The 2SLS model also requires at least one exogenous
variable.  An exogenous variable is one whose value is determined outside
the system of equations.
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Specification

First select the name of the dependent variable (response variable) and
move it to the Dependent Variable box.

Then select one or more right hand variables and copy them to the Right
Hand Variables list box.  The right hand variables are analogous to the
independent variables in ordinary least squares regression and will be listed
in the coefficient table.

Next select one or more exogenous variables and copy them to the
Exogenous Variables list box.  At least one of the exogenous variables
must not be among those selected for the Right Hand Variables.

Use the Fit Constant check box to specify a constant fitted model (checked)
or a model forced through the origin (not checked).  Press the OK button  to
begin computing the analysis.

Data

Restrictions

Up to 50 variables (endogenous plus exogenous variables) can be specified. 
At least one exogenous variable that is not also a right hand variable must
be specified.  If there are missing values for any of the variables for a case,
the entire case is deleted (listwise deletion).

Example The purpose of the example data is to estimate the world demand for copper
(Maurice and Thomas, 2002).  The data are listed on the next page, and are
available in the file Sample Data\Copper.sx.
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The variables are Q: quantity sold; PC: price of copper; MM: per capita
income; PA: price of aluminum (an alternative to copper); X: inventory of
copper; and T: time as a proxy for technology.  Consider the simultaneous
functions of the demand and supply of copper:

Q = f (PC, MM, PA)
Q = f (PC, X, T)

The demand is a function of PC, MM, and PA.  Since price (PC) is
determined by both the demand function and the supply function, it is a
endogenous variable.  The model is specified on the preceding page.  The
variables PC, MM, and PA are copied to the Right Hand Variables box. 
The right hand variables MM and PA are exogenous variables, so we copy
them to the Exogenous Variables box also.  The variables X and T are not
right hand variables in the demand function, but only appear in the supply
function.  Thus, they are exogenous variables, so we copy them to the
Exogenous Variables box.  At least one such variable is required, or the
model is said to be underidentified.  The results are shown on the next page.

The summary statistics reported have the same interpretation as with
ordinary least squares regression.  The negative sign of the coefficient for
PC means that the quantity of copper sold decreases with increasing price of
copper, which is what we would expect.

CASE         Q        PC        MM        PA         X         T

   1    3173.0     26.56      0.70     19.76   0.97679         1

   2    3281.1     27.31      0.71     20.78   1.03937         2

   3    3135.7     32.95      0.72     22.55   1.05153         3

   4    3359.1     33.90      0.70     23.06   0.97312         4

   5    3755.1     42.70      0.74     24.93   1.02349         5

   6    3875.9     46.11      0.74     26.50   1.04135         6

   7    3905.7     31.70      0.74     27.24   0.97686         7

   8    3957.6     27.23      0.72     26.21   0.98069         8

   9    4279.1     32.89      0.75     26.09   1.02888         9

  10    4627.9     33.78      0.77     27.40   1.03392        10

  11    4910.2     31.66      0.76     26.94   0.97922        11

  12    4908.4     32.28      0.79     25.18   0.99679        12

  13    5327.9     32.38      0.83     23.94   0.96630        13

  14    5878.4     33.75      0.85     25.07   1.02915        14

  15    6075.2     36.25      0.89     25.37   1.07950        15

  16    6312.7     36.24      0.93     24.55   1.05073        16

  17    6056.8     38.23      0.95     24.98   1.02788        17

  18    6375.9     40.83      0.99     24.96   1.02799        18

  19    6974.3     44.62      1.00     25.52   0.99151        19

  20    7101.6     52.27      1.00     26.01   1.00191        20

  21    7071.7     45.16      1.02     25.46   0.95644        21

  22    7754.8     42.50      1.07     22.17   0.96947        22

  23    8480.3     43.70      1.12     18.56   0.98220        23

  24    8105.2     47.88      1.10     21.32   1.00793        24

  25    7157.2     36.33      1.07     22.75   0.93810        25
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2SLS Results

Menu

Once the regression analysis is computed and displayed, a Results pull-
down menu appears on the menu at the top of the Statistix window.  Click
on the Results menu to display the 2SLS results menu displayed below.

Select Coefficient Table from the menu to redisplay the regression
coefficient table.  Select Options to return to the main dialog box used to
specify the model.  Like the Linear Regression procedure, 2SLS regression
offers the options of computing the Durbin-Watson statistic for
autocorrelation, (see page 171), displaying residual plots (see page 175),
saving fitted values and residuals (see page 176), and examining the
variance-covariance matrix of the regression coefficients (see page 185).

Computaion-

al Notes

In the first stage, ordinary least squares regression is used to compute the
fitted values of each endogenous variable using the full set of exogenous
variables as predictor variables.  The vectors of fitted values are then used
in place of the original endogenous variables to estimate the final equation
in the second stage, again using OLS regression.  See Griffiths et al. (1993)
for details.

Two Stage Least Squares Regreesion of Q  

4 Exogenous Variables: MM, PA, X, T

Predictor

Variables   Coefficient   Std Error         T         P

Constant       -6837.83     1264.46     -5.41    0.0000
PC             -66.4950     31.5338     -2.11    0.0472
MM              13997.7     1306.34     10.72    0.0000
PA              107.662     44.5098      2.42    0.0247

R-Squared           0.9421      Redid. Mean Square (MSE)     184327
Adjusted R-Squared  0.9339      Standard Deviation          429.333

Cases Included 25    Missing Cases 0
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Eigenvalues-Principal Components

The Eigenvalues-Principal Components procedure displays the
eigenvectors and eigenvalues for a list of variables.  You can also save
principal components as new variables.

Specification

Select the variables you want to analyze and move them to the Eigenvalues
Variables list box.  To weight the analysis, move the name of the variable
that contains the values to be used as weights to the Weight Variable box. 
The eigenvalues can be based on the correlation matrix or the covariance
matrix.  Select the method you want by clicking on one of the
Computational Method radio buttons.

Data

Restrictions

Up to 50 variables can be specified.  If there are missing values for any of
the variables for a case, the entire case is deleted (listwise deletion). 
Negative weights are not allowed.

Example We use the Hald data from Draper and Smith (1966) for this example.  The
same data are used to illustrate Linear Regression and are listed on page
162.  The variables CHEM1, CHEM2, CHEM3, and CHEM4 are the
percentages of four chemical compounds measured in batches of cement. 
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Eigenvalues / Eigenvectors based on Correlation Matrix

                                Cumulative

                   Percent of   Percent of

     Eigenvalues    Variance     Variance

 1      2.23570       55.9         55.9
 2      1.57607       39.4         95.3
 3      0.18661        4.7        100.0
 4      0.00162        0.0        100.0

                        Vectors

Factor           1        2        3        4

CHEM1       0.4760   0.5090   0.6755   0.2411
CHEM2       0.5639  -0.4139  -0.3144   0.6418
CHEM3      -0.3941  -0.6050   0.6377   0.2685
CHEM4      -0.5479   0.4512  -0.1954   0.6767

The analysis is specified on the preceding page.  The results are presented
below.

Eigenvalue analysis is interesting in its own right as a way to analyze
multivariate data structure (Morrison 1977, chap. 8).  It’s also an important
supplement to multiple regression analysis (Chatterjee and Price 1991).

Principal

Components

After viewing the resulting eigenvalues and eigenvectors, select Principal
Components from the Results menu to display the principal components
dialog box.  Then enter variable names for the principal components.  

The dialog box on the preceding page creates three new variables PCHEM1,
PCHEM2, and PCHEM3 to store the first three principal components. The
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principal component with the largest eigenvalue (variance component)
comes first, the next largest second, and so on.

In some regression data sets, the independent variables may be highly
correlated with one another.  When such collinearity exists, estimates of the
regression coefficients may be unstable and can lead to erroneous
inferences.  If this is the case, it’s sometimes useful to perform the
regression on a set of principal components.  The computational advantage
of using principal components rather than the original data is that they’re all
uncorrelated (they’re said to be orthogonal).  Chatterjee and Price (1991)
give a nice example of the application of this method.

Typically, the principal components corresponding to the largest
eigenvalues (i.e., largest variance components) are used for the regression. 
Jolliffe (1982) makes the point that this is not always a wise approach.

Generally, it’s best to use the correlation matrix to compute the eigenvalues
because in effect this assigns equal weight to each variable.  If the
covariance matrix is used, the results depend on the scales on which the
original variables were measured.

Computation-

al Notes

The correlation or covariance matrix is first computed using the method of
updating (see Correlations).  The resulting matrix is converted to tridiago-
nal form using Householder reductions.  The eigenvalues and eigenvectors
are then extracted using the QL decomposition.  Details on these methods
are described by Martin et al. (1968) and Bowdler et al. (1968).

In matrix notation, the principal components are calculated as XU, where X
is an n x p matrix derived from the original data and U is a p x m matrix of
eigenvectors.  The number of usable cases is n, the number of variables in
the original variable list is p, and m is the number of eigenvectors retained. 
If the calculations were based on the correlation matrix, the data in X are
the original data after Studentization (the means subtracted from the values
and then divided by their standard deviations).  If the calculations are based
on the covariance matrix, X is the original data with the means subtracted.
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C        H        A        P        T        E        R

7

Analysis of Variance

The analysis of variance menu, accessed from the Linear Models menu,
offers you a wide variety of AOV designs.  Each of the designs listed on the
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menu provides a specific dialog box relating to that design making it easy to
specify the model.  The dialog box for the General AOV/AOCV procedure
offers the flexibility of specifying the model directly by entering a model
statement, and listing covariates for analysis of covariance. 

All of the AOV procedures, with the exception of the Balanced Lattice
Design, can handle unbalanced designs (data with missing values). 
Unbalanced designs, and designs with covariates, are solved using general
linear models (GLM) techniques.  The sums of squares listed in the AOV
tables for unbalanced designs and designs with covariates are marginal
sums of squares, also called type III sums of squares.  These are the correct
sums of squares to use when constructing F-tests that test the hypothesis
that the means for the term in question are equal, given that the remaining
terms are in the model.  An important limit on the level of unbalancedness
is that any interaction term included in the model must have all cells filled
(no cells empty).

All of the analysis of variance procedures contain a results menu offering
numerous powerful options including multiple comparisons, linear
contrasts, polynomial contrasts, means plot, and residual plots.  The results
menu appears on the main menu when the basic analysis of variance table is
displayed.

These options are discussed in detail at the end of this chapter.
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Completely Randomized Design

This procedure computes the analysis of variance for the completely
randomized design.  As implied by the name, the allocation of treatments to
the experimental units is performed completely at random.  The advantages
of this design are that the number of treatments is flexible, the loss of
information because of missing values is relatively low, and the degrees of
freedom for error is maximum.  The disadvantage is that it’s often
inefficient because the experimental error includes all the variation between
experimental units except that due to treatments.

The Completely Randomized Design also goes by the name One-Way
Design.  This procedure produces the same results as the One-Way AOV
procedure discussed in Chapter 5.

Specification

The observed data must be entered into a single variable to use this
procedure.  Move the variable name containing the observed data to the
Dependent Variables box.  If you specify more than one dependent
variable, a separate analysis is produced for each variable.  A second
variable identifying the different treatment groups is also required.  Move
the grouping variable to the Treatment Variable box.  Press the OK button
to start the analysis.

Data

Restrictions

Up to ten dependent variables can be specified.  Sample sizes within
treatment levels can be unequal.  The maximum number of treatment levels
is 500.  The treatment variable can be of any data type.  Real values are
truncated to whole numbers and must be no larger than 99,999.  Strings are
truncated to ten characters.
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Example The example data are from Steel and Torrie (1980, p. 139).  Nitrogen
content was measured from six strains of red clover.  Five plots in a
greenhouse were randomly assigned to each strain.  The data are shown in
the table below, and is available in the file Sample Data\red clover.sx.

The analysis is specified on the preceding page.  The results are shown
below.

A standard analysis of variance table is displayed first.  Note that the F test
suggests a substantial between-groups (strains of red clover) effect, with a
p-value less than 0.0001.  The coefficient of variation (CV) expresses the
experimental error as a percentage of the mean; the higher the CV value,
the lower the reliability of the experiment.  

CASE   NITROGEN   STRAIN    

   1      19.40   3DOk1     

   2      32.60   3DOk1     

   3      27.00   3DOk1     

   4      32.10   3DOk1     

   5      33.00   3DOk1     

   6      17.70   3DOk5     

   7      24.80   3DOk5     

   8      27.90   3DOk5     

   9      25.20   3DOk5     

  10      24.30   3DOk5     

  11      17.00   3DOk4     

  12      19.40   3DOk4     

  13       9.10   3DOk4     

  14      11.90   3DOk4     

  15      15.80   3DOk4     

CASE   NITROGEN   STRAIN    

  16      20.70   3DOk7     

  17      21.00   3DOk7     

  18      20.50   3DOk7     

  19      18.80   3DOk7     

  20      18.60   3DOk7     

  21      14.30   3DOk13    

  22      14.40   3DOk13    

  23      11.80   3DOk13    

  24      11.60   3DOk13    

  25      14.20   3DOk13    

  26      17.30   Composite 

  27      19.40   Composite 

  28      19.10   Composite 

  29      16.90   Composite 

  30      20.80   Composite 

Completely Randomized AOV for NITROGEN

Source   DF        SS        MS       F        P

STRAIN    5    847.05   169.409    14.4   0.0000
Error    24    282.93    11.789
Total    29   1129.97

Grand Mean 19.887    CV 17.27
                                     Chi-Sq   DF        P
Bartlett's Test of Equal Variances     14.2    5   0.0143
Cochran's Q                 0.4756
Largets Var / Smallest Var  26.345

Component of variance for between groups   31.5241
Effective cell size                            5.0

STRAIN       Mean

3DOk1      28.820
3DOk5      23.980
3DOk4      14.640
3DOk7      19.920
3DOk13     13.260
Composite  18.700
Observations per Mean            5
Standard Error of a Mean    1.2391
Std Error (Diff of 2 Means) 1.4736
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The F test assumes that the within-group variances are the same for all
groups.  Bartlett’s test for equality of variances tests this assumption; it is
shown below the analysis of variance table.  The p-value of 0.0143 suggest
that the variances are unequal.  Bartlett’s test is described in Snedecor and
Cochran (1980, p. 252).  Another test of equality of variances, Cochran’s Q,
is given below Bartlett’s test.  Cochran’s Q statistic is the ratio of the
largest within-group variance over the sum of all within-group variances. 
The ratio of the largest within-group variance over the smallest has also
been a popular test for equal variances and is displayed under Cochran’s Q;
tables are given in Pearson and Hartley (1954).

A fixed-effects model (Type I) is appropriate for these data.  If a random-
effects model were appropriate (Type II), the component of variance for
between groups may be of interest (see Snedecor and Cochran, chap. 13). 
The between-groups variance component and effective cell sample size are
displayed below the equality of variance tests.  The computation of
effective cell size is described on page 246 of Snedecor and Cochran.

The bottom portion of the report lists a table of treatment means, sample
sizes, and standard errors of the means.  The standard error of the difference
of two means is reported when the sample sizes are equal.

Randomized Complete Block Design

The Randomized Complete Block (RCB) design is used to reduce
experimental error by dividing the experimental units into blocks of units
that are thought to be similar.  The object of blocking is to minimize the
variability within the blocks, and maximize the variability between the
blocks.  Blocks in the RCB design are of equal size, each of which contains
all the treatments.  This procedure handles missing values by using the
GLM technique to compute marginal sums of squares.

This procedure is used to analyze single-factor RCB designs (i.e., one
treatment factor).  Multiple-factor experiments in a RCB design can be
analyzed using the Factorial Design procedure discussed on page 238.
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CASE FAILURES      TRT      BLK

   1        8        1        1

   2       10        1        2

   3       12        1        3

   4       13        1        4

   5       11        1        5

   6        2        2        1

   7        6        2        2

   8        7        2        3

   9       11        2        4

  10        5        2        5

  11        4        3        1

  12       10        3        2

  13        9        3        3

CASE FAILURES      TRT      BLK

  14        8        3        4

  15       10        3        5

  16        3        4        1

  17        5        4        2

  18        9        4        3

  19       10        4        4

  20        6        4        5

  21        9        5        1

  22        7        5        2

  23        5        5        3

  24        5        5        4

  25        3        5        5

Specification

Move the name of the variable containing the observed data to the
Dependent Variables box.  If you specify more than one dependent
variable, a separate analysis is produced for each variable.  Move the
variable that identifies blocks to the Block Variable box.  Move the variable
that identifies treatments to the Treatment Variable box.  Press the OK
button to start the analysis.

Data

Restrictions

Up to ten dependent variables can be specified.  The maximum number of
block and treatment levels are 200 each.  The block and treatment variables
can be of any data type.  Real values are truncated to whole numbers and
must be no larger than 99,999.  Strings are truncated to ten characters. 
Missing values are allowed.

Example The example data are from Snedecor and Cochran (1980, sect. 14.2).  The
dependent variable is the number of soybeans out of 100 that failed to
emerge, and the treatments are various fungicides (the first treatment level
was a no-fungicide control).  The data are listed below, and are stored in the
file Sample Data\soybeans.sx.
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You can use the Transformations CAT function to generate repetitive
sequences, such as those seen for TRT and BLK.  After entering the 25
values for FAILURES, we can use the Transformation expressions
TRT = CAT(5,5) and BLK = CAT(5,1) to create these variables.  The
model is specified in the dialog box on the preceding  page.  The results are
presented in the table below.

The analysis of variance table appears first in the report.  An F test and the
associated p-value are listed for the treatment variable TRT.  The test
suggests a between-fungicides effect ( p = 0.0219). 

Tukey’s one degree of freedom test for nonadditivity is useful when the
experimental design only permits an additive model to be fitted to the data
but you suspect that interaction is present.  There’s little suggestion of
nonadditivity (p = 0.6150) in this example.  If nonadditivity is present, you
should consider transforming your data in an effort to remove it.

The object of using blocks is to increase efficiency by reducing the error
mean square.  The relative efficiency indicates the magnitude to which
blocking succeeded in reducing experimental error.  In this example, the
relative efficiency of using the RCB design over the completely randomized
design is 1.19, which is a 19% increase in precision.  See Gomez and
Gomez (1984) for computational details.

Randomized Complete Block AOV Table for FAILURES

Source   DF        SS        MS      F        P

BLK       4    49.840   12.4600
TRT       4    83.840   20.9600   3.87   0.0219
Error    16    86.560    5.4100
Total    24   220.240

Grand Mean 7.5200    CV 30.93

Tukey's 1 Degree of Freedom Test for Nonadditivity

Source          DF        SS        MS       F        P

Nonadditivity    1    1.4957   1.49569    0.26   0.6150
Remainder       15   85.0643   5.67095

Relative Efficiency, RCB 1.19

Means of FAILURES for TRT  Fungicide treatments

TRT        Mean

Control  10.800
Fung #1   6.200
Fung #2   8.200
Fung #3   6.600
Fung #4   5.800
Observations per Mean            5
Standard Error of a Mean    1.0199
Std Error (Diff of 2 Means) 1.2129
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A table of treatment means, sample sizes, and standard errors of the means
is displayed at the bottom of the report.  The standard error of the difference
of two means is reported when the sample sizes are equal.

Results Menu Once the AOV table is displayed, a results menu appears on the main menu. 
Use the procedures on this menu to compute multiple comparisons, linear
contrasts, polynomial contrasts, means plots, residual plots, and to save
residuals.  These options are discussed in detail at the end of this chapter.

Computation-

al Notes

Oliver’s (1967) generalization of Yates’ algorithm (Daniel, 1976) is used
for balanced designs.  Unbalanced designs are computed using general
linear models (Searle, 1987; Glantz and Slinker, 1990).

Latin Square Design

This procedure computes the analysis of variance for Latin Square
Designs.  This design simultaneously handles two known sources of
variation, commonly referred to as row-blocking and column-blocking.

Specification

Move the name of the variable containing the observed data to the
Dependent Variables box.  If you specify more than one dependent
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YIELD     ROW   COLUMN  SPACING

  257       1        1        4

  230       1        2       10

  279       1        3        2

  287       1        4        6

  202       1        5        8

  245       2        1        8

  283       2        2        2

  245       2        3       10

  280       2        4        4

  260       2        5        6

  182       3        1       10

  252       3        2        4

  280       3        3        6

  246       3        4        8

  250       3        5        2

YIELD     ROW   COLUMN  SPACING

  203       4        1        2

  204       4        2        6

  227       4        3        8

  193       4        4       10

  259       4        5        4

  231       5        1        6

  271       5        2        8

  266       5        3        4

  334       5        4        2

  338       5        5       10

variable, a separate analysis is produced for each variable.  Move the
variable that identifies row-blocking to the Row Variable box.  Move the
variable that identifies column-blocking to the Column Variable box. 
Move the variable that identifies treatments to the Treatment Variable box. 
Press the OK button to start the analysis.

Data

Restrictions

Up to ten dependent variables can be specified.  The number of treatments
must be equal to the number of rows and columns.  The row, column, and
treatment variables can be of any data type.  Real values are truncated to
whole numbers and must be no larger than 99,999.  Strings are truncated to
ten characters.  Missing values are allowed.

Example The example data are from a field trial to study the effect of row spacing on
the yield of millet (Snedecor and Cochran, 1980).  As is common with
agricultural field experiments, the row and column blocks represent fertility
gradients in two directions.  The data are listed below, and are stored in the
file Sample Data\millet.sx.

If you study the data above, you’ll see that the five values for the treatment
variable SPACING appear exactly once for each combination of ROW and
COLUMN.  The model is specified in the dialog box on the preceding 
page.  The results are presented in the table on the next page.

The analysis of variance table appears first in the report.  An F test and the
associated p-value are listed for the treatment variable SPACING.  The test
for treatment effect is not significant ( p = 0.4523). 
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Tukey’s one degree of freedom test for nonadditivity is useful when the
experimental design only permits an additive model to be fitted to the data
but you suspect that interaction is present.  There’s little suggestion of
nonadditivity (p = 0.7298) in this example.  If nonadditivity is present, you
should consider transforming your data in an effort to remove it.  See
Snedecor and Cochran (1980) for computational details.

As with the RCB design, we’re interested in the efficiency of blocking. 
There are three relative efficiencies reported, indicating the improved
efficiencies of the Latin square design compared to three alternative
designs.  Using a Latin square design in this experiment resulted in a 45%
improvement compared to the completely randomized design, but only a 6%
improvement over the RCB design using rows as blocks.  See Gomez and
Gomez (1984) for computational details.

A table of treatment means, sample sizes, and standard errors of the means
is displayed at the bottom of the report.  The standard error of the difference
of two means is reported when the sample sizes are equal.

Latin Square AOV Table for YIELD  

Source    DF        SS        MS      F        P

ROW        4   13601.4   3400.34
COLUMN     4    6146.2   1536.54
SPACING    4    4156.6   1039.14   0.98   0.4523
Error     12   12667.3   1055.61
Total     24   36571.4

Grand Mean 252.16    CV 12.88

Tukey's 1 Degree of Freedom Test for Nonadditivity

Source          DF        SS        MS       F        P

Nonadditivity    1     142.9    142.89    0.13   0.7298
Remainder       11   12524.4   1138.58

                                   Relative 

                                  Efficiency

Completely Randomized Design         1.45
Randomized Complete Block, ROW       1.06
Randomized Complete Block, COLUMN    1.40

Means of YIELD for SPACING  

SPACING    Mean

      2  269.80
      4  262.80
      6  252.40
      8  238.20
     10  237.60
Observations per Mean            5
Standard Error of a Mean    3.8118
Std Error (Diff of 2 Means) 4.5331
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Results Menu Once the AOV table is displayed, a results menu appears on the main menu. 
Use the procedures on this menu to compute multiple comparisons, linear
contrasts, polynomial contrasts, means plots, residual plots, and to save
residuals.  These options are discussed in detail at the end of this chapter.

Computation-

al Notes

The analysis of variance is computed using general linear models (Searle,
1987; Glantz and Slinker, 1990).

Balanced Lattice Design

The Balanced Lattice Design is an incomplete block design that’s useful
when the number of treatments is large, which can make a RCB design
impractical.  Individual blocks don’t contain all treatments.  This design
requires that the number of treatments is a perfect square, the block size is
the square root of the number of treatments, and the number of replications
is one more than the block size.  Unlike the other AOV procedures
discussed in this chapter, this procedure doesn’t allow missing values.

Specification

Move the name of the variable containing the observed data to the
Dependent Variables box.  If you specify more than one dependent
variable, a separate analysis is produced for each variable.  Move the
variables that identify replicates, blocks, and treatments to the Replication
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CASE       Y    REP    BLK   FERT

   1     147      1      1      1

   2     152      1      1      2

   3     167      1      1      3

   4     150      1      1      4

   5     127      1      2      5

   6     155      1      2      6

   7     162      1      2      7

   8     172      1      2      8

   9     147      1      3      9

  10     100      1      3     10

  11     192      1      3     11

  12     177      1      3     12

  13     155      1      4     13

  14     195      1      4     14

  15     192      1      4     15

  16     205      1      4     16

  . . .

  80     220      5      4     14

Variable, Block Variable, and Treatment Variable boxes respectively. 
Press the OK button to start the analysis.

Data

Restrictions

Up to ten dependent variables can be specified.  The maximum number of
treatments allowed is 196.  The replication, block, and treatment variables
can be of any data type.  Real values are truncated to whole numbers and
must be no larger than 99,999.  Strings are truncated to ten characters. 
Missing values are not allowed.

Example The example data are from Gomez and Gomez (1984, p. 45).  Tiller number
per square meter is recorded from 16 fertilizer treatments of rice in a 4 X 4
balanced lattice design.  The data for the first of five replicates is listed
below.  The complete data are stored in the file Sample Data\tiller.sx.

The model is specified in the dialog box on the preceding  page.  The results
are presented in the table on the next page.

The analysis of variance table lists the sums of squares computed in the
usual manner.  The mean square for the treatment factor is adjusted to
account for an unequal block effect, if one exists, since not all treatments
are represented in each block.  The F test for the treatment factor is
computed using the adjusted mean square for treatment and the effective
error.  The test for treatment effect is significant ( p = 0.0001).

The relative efficiency of the balanced lattice design, compared to the RCB
design, for these data is 1.17, indicating a 17% improvement in efficiency.
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A table of treatment means is displayed at the bottom of the report.  Like the
treatment mean square, the treatment means are adjusted to account for an
unequal block effect, if one exists, since not all treatments are represented
in each block.  

Results Menu Once the AOV table is displayed, a results menu appears on the main menu. 
Use the procedures on this menu to compute multiple comparisons, linear
contrasts, polynomial contrasts, means plots, residual plots, and to save
residuals.  These options are discussed in detail at the end of this chapter.

Computation-

al Notes

The analysis of variance, relative efficiency, and adjustments to the
treatment means are computed using the algorithms described by Gomez
and Gomez (1984).

Balanced Lattice AOV for Y  

Source             DF        SS        MS      F        P

REP                 4    5946.0
FERT(unadj)        15   26994.3
BLK*REP            15   11381.8    758.79
Intrablock error   45   14533.3    322.96
FERT(adj)         (15)            1600.12   4.33   0.0001
Effective error   (45)             369.34
Total              79   58855.5

Grand Mean 171.82    CV 11.18
Relative efficiency, RCB 1.17

Means of Y for FERT  

FERT    Mean     FERT    Mean

   1  165.76        9  163.00
   2  161.04       10  118.82
   3  183.92       11  188.19
   4  175.68       12  190.54
   5  162.88       13  169.51
   6  173.82       14  197.23
   7  168.43       15  185.67
   8  176.92       16  167.78
Observations per Mean            5
Standard Error of a Mean    2.9317
Std Error (Diff of 2 Means) 3.4863
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Factorial Design

The Factorial Design procedure computes the analysis of variance for
complete factorial designs and fractional factorial designs.  It can handle
factorial experiments in a completely randomized design, randomized block
design without replication, and a randomized block design with replication.

Specification

Move the name of the variable containing the observed data to the
Dependent Variables box.  If you specify more than one dependent
variable, a separate analysis is produced for each variable.

The Replication Variable and Block Variable are both optional.  If the
experiment was performed in a completely randomized design without
replication, then leave both boxes empty.  If the experiment was performed
in a randomized block design without additional replication, then leave the  
Replication Variable box empty and move the blocking variable to the
Block Variable box.  If the experiment is in a randomized block design with
replication, then use both boxes the specify replication and blocking vari-
ables.  You can use the General AOV/AOCV procedure to analyze factorial
experiments in other designs, such as a Latin square or split-plot design.

Move the treatment factor variables to the Treatment Variables box.  The
Interaction Terms drop-down list lets you select the highest order of
interaction terms to be included in the model: no interactions, up to 2-way
interactions, up to 3-way interactions, etc.  Press the OK button to start the
analysis.
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CASE YIELD REP BLK   A   B   C   D   E   F

   1  2.92   1   1   0   0   0   0   0   0

   2  3.28   1   1   0   0   0   0   1   1

   3  3.34   1   1   0   0   0   1   0   1

   4  3.29   1   1   0   0   0   1   1   0

   5  3.16   1   1   0   1   1   0   0   0

   6  3.63   1   1   0   1   1   0   1   1

   7  4.00   1   1   0   1   1   1   0   1

   8  4.04   1   1   0   1   1   1   1   0

   9  3.65   1   1   1   0   1   0   0   0

  10  3.77   1   1   1   0   1   0   1   1

  11  4.37   1   1   1   0   1   1   0   1

  12  4.05   1   1   1   0   1   1   1   0

  13  3.45   1   1   1   1   0   0   0   0

  14  3.85   1   1   1   1   0   0   1   1

  15  3.95   1   1   1   1   0   1   0   1

  16  3.88   1   1   1   1   0   1   1   0

  . . .

  64  4.78   2   2   1   1   1   1   1   1

Data

Restrictions

Up to ten dependent variables can be specified.  The total number of factors
(replication, block, and treatment variables) selected can’t exceed ten.  The
maximum number of levels for each factor is 200.  The factor variables can
be of any data type.  Real values are truncated to whole numbers and must
be no larger than 99,999.  Strings are truncated to ten characters.  Missing
values are allowed.  For unbalanced and fractional designs, the maximum
size of the GLM design matrix is 500.  (The size of the design matrix is
equivalent to the model degrees of freedom: total degrees of freedom minus
error degrees of freedom.)

Example The example data are from a rice yield trial in a fractional factorial design
(Gomez and Gomez, 1984, p. 172).  Fractional factorial designs are useful
when the number of factors of interest is so large that it would be too
expensive or too impractical to include the complete set of factorial
treatments.  The example data are from a 2  factorial experiment in a ½6

fractional design with two blocks of 16 experimental plots each, and with
two replications.  A partial listing of the data are presented below.  The
complete data are available in the file Sample Data\fractional.sx.

Since a fractional factorial doesn’t include all treatment combinations, it’s
not possible to estimate all of main effects and interactions.  These
experiments must be designed carefully so that all the main effects, and all
or most of the low-order interactions terms can be estimated.  The
remaining terms assumed to have zero effects.  

The analysis is specified on the preceding page.  The results are presented
on the next page.
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Since up to 3-way interactions was selected in the dialog box, only main
effects, 2-way interactions, and 3-way interactions are included in the AOV
table.  The higher-order interaction effects are assumed to be zero and the
sums of squares are pooled to provide the error sums of squares.

Note that not all the possible 2-way and 3-way interactions are listed.  This
is a feature of fractional factorial designs.  The omitted interactions are
aliased with terms that are listed in the table.  Statistix automatically selects
which aliased terms to display, placing a higher priority on low-order terms,
and selecting aliased terms of the same order in lexical order.  If you’d like
to chose different aliased terms, then you must use the General
AOV/AOCV and list each term you want included.  

Results Menu Use the procedures on the results menu to compute means, multiple
comparisons, contrasts, plots, and save residuals.  These options are
discussed in detail at the end of this chapter.

Analysis of Variance Table for Y  

Source      DF          SS        MS        F        P

BLOCK        1     0.00391   0.00391
REP          1     0.05641   0.05641
BLOCK*REP    1     0.00391   0.00391
A            1     3.00156   3.00156   324.51   0.0000
B            1     0.57760   0.57760    62.45   0.0000
C            1     2.00223   2.00223   216.47   0.0000
D            1     3.20410   3.20410   346.40   0.0000
E            1     0.50410   0.50410    54.50   0.0000
F            1     1.76226   1.76226   190.52   0.0000
A*B          1     0.03422   0.03422     3.70   0.0639
A*C          1     0.01323   0.01323     1.43   0.2412
A*D          1     0.00160   0.00160     0.17   0.6804
A*E          1   1.000E-04   0.00010     0.01   0.9179
A*F          1     0.04101   0.04101     4.43   0.0437
B*C          1     0.03516   0.03516     3.80   0.0606
B*D          1     0.04101   0.04101     4.43   0.0437
B*E          1     0.01381   0.01381     1.49   0.2313
B*F          1     0.00423   0.00423     0.46   0.5043
C*D          1     0.35701   0.35701    38.60   0.0000
C*E          1     0.01156   0.01156     1.25   0.2725
C*F          1     0.00302   0.00302     0.33   0.5717
D*E          1     0.13876   0.13876    15.00   0.0005
D*F          1     0.04000   0.04000     4.32   0.0462
E*F          1     0.05290   0.05290     5.72   0.0233
A*B*D        1     0.00456   0.00456     0.49   0.4882
A*B*E        1     0.00391   0.00391     0.42   0.5207
A*B*F        1     0.02403   0.02403     2.60   0.1175
A*C*D        1     0.09151   0.09151     9.89   0.0037
A*C*E        1     0.01756   0.01756     1.90   0.1785
A*C*F        1   9.000E-04   0.00090     0.10   0.7572
A*D*E        1     0.04951   0.04951     5.35   0.0277
A*D*F        1     0.04622   0.04622     5.00   0.0330
A*E*F        1   2.500E-05   0.00003     0.00   0.9589
Error       30     0.27749   0.00925
Total       63     12.4193

Grand Mean 3.6191    CV 2.66
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Split-Plot Design

The split-plot design is a two-factor design suitable for experiments that
have more treatments than can be accommodated in a complete block
design.  One of the factors is assigned to the main plot.  The main plot is
divided into subplots to which the second factor is assigned.  The precision
of the effects of the main-plot factor is sacrificed to improve the precision
of the subplot factor.

Specification

Move the name of the variable containing the observed data to the
Dependent Variables box.  If you specify more than one dependent
variable, a separate analysis is produced for each variable.

Move the blocking, or replication, variable to the Replication Variable box. 
Move the variable name of the main-plot factor to the Main-plot Factor
box.  Move the variable name of the subplot factor to the Subplot Factor
box.  Press the OK button to start the analysis.

Data

Restrictions

Up to ten dependent variables can be specified.  The maximum number of
levels for the replication, main-plot factor, and subplot factors are 200 each. 
The factor variables can be of any data type.  Real values are truncated to
whole numbers and must be no larger than 99,999.  Strings are truncated to
ten characters.  For unbalanced designs, the maximum size of the GLM
design matrix is 500.  (The size of the design matrix is equivalent to the
model degrees of freedom: total DF minus error DF).
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CASE    TONS     VAR     BLK    DATE

   1    2.17       1       1     106

   2    1.58       1       1      35

   3    2.29       1       1      54

   4    2.23       1       1      71

   5    1.88       1       2     106

   6    1.26       1       2      35

   7    1.60       1       2      54

   8    2.01       1       2      71

   9    1.62       1       3     106

  10    1.22       1       3      35

  11    1.67       1       3      54

  12    1.82       1       3      71

  . . .

  72    1.33       3       6      71

Example The example is a split-plot design from Section 16.15 of Snedecor and
Cochran (1980).  TONS is the yield of alfalfa in tons per acre.  BLK
identifies the six blocks used.  VAR is the variety of alfalfa.  DATE is the
time in days between the second and third cuttings.  A partial listing of the
data are presented below.  The complete data are available in the file
Sample Data\alfalfa.sx.

The second cutting was on July 27.  The third cuttings were on September
1, September 20, and October 7.  One treatment wasn’t cut a third time.  We
assigned this group the date November 10, intending to reflect the end of
the growing season.  The values for DATE are 36, 55, 72, and 106.  VAR
and BLK are qualitative factors, and the actual values of them have
meaning only as labels.  When possible, factors, such as DATE, should be
represented quantitatively because response surfaces can then be examined
with polynomial contrasts (see Polynomial Contrasts on page 273).

The analysis is specified in the dialog box on the preceding page.  The
results are shown below.

The split-plot design has two error terms.  These are labeled “Error
BLK*VAR” and “Error BLK*VAR*DATE” in the AOV table above.  The
F test for the main–plot factor VAR is computed using the first error term. 

Analysis of Variance Table for TONS  Tons of alfalfa

Source               DF        SS        MS       F        P

BLK                   5   4.14982   0.82996
VAR                   2   0.17802   0.08901    0.65   0.5412
Error BLK*VAR        10   1.36235   0.13623
DATE                  3   1.96247   0.65416   23.39   0.0000
VAR*DATE              6   0.21056   0.03509    1.25   0.2973
Error BLK*VAR*DATE   45   1.25855   0.02797
Total                71   9.12177

Grand Mean 1.5968
  CV(BLK*VAR) 23.11
  CV(BLK*VAR*DATE) 10.47
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The subplot factor DATE and the VAR*DATE interaction are tested using
the second error term.  The p-value of 0.5412 suggests little difference
between varieties.  The DATE effect appears to be very significant.

There are two coefficients of variation listed, one for each error term.  The
first coefficient indicates the degree of precision for the main-plot factor. 
The second coefficient indicates the precision for the subplot factor and the
VAR*DATE interaction.

Results Menu Use the procedures on the results menu to compute means, multiple
comparisons, contrasts, plots, and save residuals.  These options are
discussed in detail at the end of this chapter.

Computation-

al Notes

Oliver’s (1967) generalization of Yates’ algorithm (Daniel, 1976) is used
for balanced designs.  Unbalanced designs are computed using general
linear models (Searle, 1987; Glantz and Slinker, 1990).

Strip-Plot Design

The strip-plot design is a two-factor design that’s useful when the desired
precision for the two-factor interaction is greater than that of either main
effect.  The design calls for a horizontal-strip factor, a vertical-strip factor,
and an intersection plot for the interaction of the two factors. 

Specification The strip-plot dialog box is shown on the next page.  Move the name of the
variable containing the observed data to the Dependent Variables box.  If
you specify more than one dependent variable, a separate analysis is
produced for each variable.

Specify the model by moving the variables for replication, the horizontal-
strip factor, and the vertical-strip factor to the corresponding Replication
Variable, Horizontal Factor, and Vertical Factor boxes.  Press the OK
button to start the analysis.
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CASE    YIELD   REP   VARIETY     NITROGEN

   1     2373     1   IR8                0

   2     4076     1   IR8               60

   3     7254     1   IR8              120

   4     4007     1   IR127-80           0

   5     5630     1   IR127-80          60

   6     7053     1   IR127-80         120

   7     2620     1   IR305-4-12         0

   8     4676     1   IR305-4-12        60

   9     7666     1   IR305-4-12       120

  10     2726     1   IR400-2-5          0

  11     4838     1   IR400-2-5         60

  12     6881     1   IR400-2-5        120

  . . .

  54     3214     3   Peta             120

Data

Restrictions

Up to ten dependent variables can be specified.  The maximum number of
levels for the replication, horizontal, and vertical factors are 200 each.  The
factor variables can be of any data type.  Real values are truncated to whole
numbers and must be no larger than 99,999.  Strings are truncated to ten
characters.  For unbalanced designs, the maximum size of the GLM design
matrix is 500.

Example The example data are from a yield trial of six varieties of rice and three
levels of nitrogen fertilizer in a strip-plot design with three replications
(Gomez and Gomez, 1984).  A partial listing of the data are presented
below.  The complete data can be found in Sample Data\strip-plot.sx.

The analysis is specified in the dialog box above.  The results are shown on
the next page.
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The strip-plot design has three error terms.  The F test for the horizontal-
strip factor VARIETY is computed using the first error term
REP*VARIETY.  The vertical-strip factor NITROGEN is tested using the
error term REP*NITROGEN.  The interaction VARIETY*NITROGEN is
tested using the REP*VARIETY*NITROGEN error term.

Results Menu Use the procedures on the results menu to compute means, multiple
comparisons, contrasts, plots, and save residuals.  These options are
discussed in detail at the end of this chapter.

Split-Split-Plot Design

The split-split-plot design is an extension of the split-plot design to
accommodate a third factor.  There are three plots sizes: the main plot, the
subplot, and the sub-subplot.  There are three levels of precision: the main-
plot factor has the lowest, and the sub-subplot factor having the highest
degree of precision.

Example The example data are from a yield trial of rice in a split-split-plot design
with three replications (Gomez and Gomez, 1984, p. 143).  The main-plot
factor is nitrogen (N), the subplot factor is management practice (MGMT),
and the sub-subplot factor is variety (VAR).  You can view the data by

Analysis of Variance Table for YIELD  Grain yield

Source                       DF          SS          MS       F        P

REP                           2     9220962     4610481
VARIETY                       5   5.710E+07   1.142E+07    7.65   0.0034
Error REP*VARIETY            10   1.492E+07     1492262
NITROGEN                      2   5.068E+07   2.534E+07   34.07   0.0031
Error REP*NITROGEN            4     2974908      743727
VARIETY*NITROGEN             10   2.388E+07     2387798    5.80   0.0004
Error REP*VARIETY*NITROGEN   20     8232917      411646
Total                        53   1.670E+08

Grand Mean 5289.9
  CV(REP*VARIETY) 23.09
  CV(REP*NITROGEN) 16.30
  CV(REP*VARIETY*NITROGEN) 12.13
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opening the file Sample Data\split-split-plot.sx.

The model is specified in the dialog box above.  The results are shown
below.

Note the three error terms.  The terms that use the mean square of each error
term as the denominator for the F test are listed immediately above them in
the table.

Computation-

al Notes

Oliver’s (1967) generalization of Yates’ algorithm (Daniel, 1976) is used
for balanced designs.  Unbalanced designs are computed using general
linear models (Searle, 1987; Glantz and Slinker, 1990).

Analysis of Variance Table for YIELD  

Source                  DF        SS        MS        F        P

REP                      2     0.732     0.366
N                        4    61.641    15.410    27.70   0.0001
Error REP*N              8     4.451     0.556
MGMT                     2    42.936    21.468    82.00   0.0000
N*MGMT                   8     1.103     0.138     0.53   0.8226
Error REP*N*MGMT        20     5.236     0.262
VAR                      2   206.013   103.007   207.87   0.0000
N*VAR                    8    14.145     1.768     3.57   0.0019
MGMT*VAR                 4     3.852     0.963     1.94   0.1149
N*MGMT*VAR              16     3.699     0.231     0.47   0.9538
Error REP*N*MGMT*VAR    60    29.732     0.496
Total                  134   373.541

Grand Mean 6.5544
  CV(REP*N) 11.38
  CV(REP*N*MGMT) 7.81
  CV(REP*N*MGMT*VAR) 10.74
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Strip-Split-Plot Design

The strip-split-plot design is an extension of the strip-plot design to
accommodate a third factor.  The intersection plot of the strip-plot design is
divided into subplots for the third factor.  There are four plots sizes: the
horizontal strip, the vertical strip, the intersection plot, and the subplot. 
There are four levels of precision with the subplot factor have the highest
degree of precision.

Example

The example data are from a yield trial of rice (Gomez and Gomez, 1984,
p.155).  The treatment factors are nitrogen, variety, and planting method
(broadcast vs. transplanted).  You can view the data by opening the file
Sample Data\strip-split-plot.sx.  The model is specified in the dialog box
above.  The results are shown on the next page.

Note that there are four error terms.  The terms that use the mean square of
each error term as the denominator for the F test are listed immediately
above them in the table.
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Repeated Measures Design

For the analysis of variance designs discussed earlier in the chapter, an
individual experimental unit, whether it be a test animal or a plot of land, is
assigned to a single treatment and the response variable is measured only
once.  For a repeated measures analysis of variance, an individual
experimental unit, or subject, is observed under several different levels of
one or more experimental factors.  This procedure computes the analysis of
variance for a variety of repeated measures designs.

Specification In order to specify a repeated measures design, it’s important to understand
the distinction between a between-subject factor and a within-subject factor. 
A between-subject factor is an experimental treatment whose effect is
estimated by observing differences between subjects.  The pool of available
subjects are divided into one group for each level of a between-subjects
factor, so an individual subject has only one level of the treatment applied
to it.  A within-subject factor is one whose effect is estimated by observing
differences within subjects.  All subjects have each level of the treatment
applied to them.

Analysis of Variance Table for YIELD  

Source           DF          SS          MS       F        P

REP (A)           2   1.530E+07     7653156
NITROGEN (B)      2   1.165E+08   5.827E+07   36.65   0.0027
Error A*B         4     6359988     1589997
VARIETY (C)       5   4.909E+07     9818698    3.67   0.0380
Error A*C        10   2.673E+07     2672583
B*C              10   2.461E+07     2461442    2.58   0.0344
Error A*B*C      20   1.911E+07      955675
PLANTING (D)      1      726028      726028    1.72   0.1982
B*D               2     2467935     1233968    2.92   0.0668
C*D               5   2.376E+07     4751761   11.25   0.0000
B*C*D            10     7513641      751364    1.78   0.1007
Error A*B*C*D    36   1.521E+07      422560
Total           107   3.074E+08

Grand Mean 5371.6
  CV(REP*NITROGEN) 23.47
  CV(REP*VARIETY) 30.43
  CV(REP*NITROGEN*VARIETY) 18.20
  CV(REP*NITROGEN*VARIETY*PLANTING) 12.10
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A repeated measures design doesn’t require a between-subjects factor, but it
must have at least one within-subjects factor.  The simplest repeated
measures design is the one-way repeated measures analysis of variance.  In
this design, each subject is observed over the various levels of a single
experimental factor (see example I below). 

Move the name of the variable containing the observed data to the
Dependent Variables box.  If you specify more than one dependent
variable, a separate analysis is produced for each variable.

If your model includes any between-subject factors, move the variable for
those factors to the Between-Subject Factors box.  Move the variable that
identifies subjects to the Subject Factor box.  Move the variables that
identify within-subject factors to the Within-Subject Factor box.  Press the
OK button to start the analysis.

Data

Restrictions

Up to ten dependent variables can be specified.  Up to three between-
subject factors and three within-subject factors can be specified.  All factors
are limited to 200 levels each.  The factor variables can be of any data type.

Example I -

One-way RM

AOV

The example data are from a study to examine the effects of two stages of
digestion on the metabolism of dogs (Glantz and Slinker, 1990, p. 392). 
The first stage is the act of eating the food (smelling, chewing, and tasting). 
The second stage is the digestion that occurs in the stomach.  The metabolic
rate was observed after meals were provided to six dogs in three different
manners: (1) eating normally, (2) placing the food in the mouth but
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CASE    METAB   DOG   MODE   

   1      104     1   Normal 

   2       91     1   Mouth  

   3       22     1   Stomach

   4      106     2   Normal 

   5       94     2   Mouth  

   6       14     2   Stomach

   7      111     3   Normal 

   8      105     3   Mouth  

   9       14     3   Stomach

CASE    METAB   DOG   MODE 

  10      114     4   Normal 

  11      106     4   Mouth  

  12       15     4   Stomach

  13      117     5   Normal 

  14      120     5   Mouth  

  15       18     5   Stomach

  16      139     6   Normal 

  17      111     6   Mouth  

  18        8     6   Stomach

bypassing the stomach, and (3) bypassing the mouth by placing the food
directly into the stomach.  The data are shown in the table below, and are
stored in the file Sample Data\eating.sx.

The model is specified in the dialog box on the preceding  page.  The results
are presented below.

The F test for the effect of eating modes in the AOV table above is highly
significant.  Placing food directly into the stomachs of the dogs resulted in a
lower metabolic rate compared to the other two modes of eating.

Example II -

Two-way RM

AOV

The following example is a two-way repeated measures with one between-
subject factor and one-within subject factor.  It compares the effects of
alcohol on people diagnosed with antisocial personality disorder (ASP) and
those that don’t have ASP (Glantz and Slinker, 1990, p. 410).  Personality
type (ASP and non-ASP) is a between-subject factor (a subject has either
one personality type or the other).  Subjects are given alcohol to drink, and

Analysis of Variance Table for METAB  

Source   DF        SS        MS        F        P

DOG       5     572.9     114.6
MODE      2   36188.4   18094.2   198.35   0.0000
Error    10     912.2      91.2
Total    17   37673.6

Grand Mean 78.278    CV 12.20

Tukey's 1 Degree of Freedom Test for Nonadditivity

Source         DF        SS        MS       F        P

Nonadditivity   1   523.522   523.522   12.12   0.0069
Remainder       9   388.700    43.189

Means of METAB for MODE  

MODE       Mean

Normal   115.17
Mouth    104.50
Stomach   15.17
Observations per Mean            6
Standard Error of a Mean    1.9746
Std Error (Diff of 2 Means) 2.3483
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AGGRESS  P_TYPE  SUBJECT  DRINK   

   0.81  Non-ASP       1  Sober   

   0.59  Non-ASP       1  Drinking

   0.91  Non-ASP       2  Sober   

   1.04  Non-ASP       2  Drinking

   0.98  Non-ASP       3  Sober   

   1.11  Non-ASP       3  Drinking

   1.08  Non-ASP       4  Sober   

   1.13  Non-ASP       4  Drinking

   1.10  Non-ASP       5  Sober   

   1.15  Non-ASP       5  Drinking

   1.16  Non-ASP       6  Sober   

   1.16  Non-ASP       6  Drinking

   1.19  Non-ASP       7  Sober   

   1.25  Non-ASP       7  Drinking

   1.44  Non-ASP       8  Sober   

   1.70  Non-ASP       8  Drinking

AGGRESS  P_TYPE  SUBJECT  DRINK   

   0.72  ASP           1  Sober   

   0.83  ASP           1  Drinking

   0.82  ASP           2  Sober   

   0.99  ASP           2  Drinking

   0.89  ASP           3  Sober   

   1.17  ASP           3  Drinking

   1.01  ASP           4  Sober   

   1.24  ASP           4  Drinking

   1.10  ASP           5  Sober   

   1.33  ASP           5  Drinking

   1.14  ASP           6  Sober   

   1.47  ASP           6  Drinking

   1.24  ASP           7  Sober   

   1.59  ASP           7  Drinking

   1.34  ASP           8  Sober   

   1.73  ASP           8  Drinking

the aggressiveness is evaluated before and after drinking.  Drinking status
(sober and drinking) is a within-subject factor.  The data are listed below,
and are stored the file Sample Data\alcohol.sx.

The dependent variable AGGRESS is a score for aggressiveness obtained
from a questionnaire.  Note that although there were a total of 16 subjects in
the study, the values for the variable SUBJECT are numbered 1 through 8
within each personality type.  The results are shown below.

Note that there are two error terms listed in the AOV table.  Personality
type is tested using the subject within personality type term
P_TYPE*SUBJECT.  DRINK and the two-factor interaction are tested
using the P_TYPE*SUBJECT*DRINK term.

The test for the P_TYPE*DRINK interaction is significant.  Examining this
interaction using the Means Plot available on the results menu clearly
illustrates that while drinking increases aggressiveness, the increase is much
more dramatic for the ASP personality type.

Analysis of Variance Table for AGGRESS  Aggressiveness

Source                       DF        SS        MS       F        P

P_TYPE                        1   0.02050   0.02050    0.16   0.6921
Error P_TYPE*SUBJECT         14   1.75589   0.12542
DRINK                         1   0.20320   0.20320   29.23   0.0001
P_TYPE*DRINK                  1   0.08303   0.08303   11.94   0.0039
Error P_TYPE*SUBJECT*DRINK   14   0.09732   0.00695
Total                        31   2.15995

Grand Mean 1.1378
  CV(P_TYPE*SUBJECT) 31.13
  CV(P_TYPE*SUBJECT*DRINK) 7.33
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Missing Values

in Repeated

Measures

Missing values are allowed in one-way repeated measures analysis of
variance models.  The presence of missing values is limited in multi-factor
repeated measures designs.  Statistix allows the number of subjects to be
different for different levels of a between-subjects factor.  But individual
subjects must have valid observations recorded for all levels of the within-
subject factors.

General AOV/AOCV

The General AOV/AOCV procedure is a flexible procedure you can use to
analyze many analysis of variance and covariance designs, including ones
that are unbalanced.  Models are specified by explicitly entering a model
statement.  Many options are available—mean estimation, multiple
comparisons of means, general and polynomial contrasts, residual plots, and
least squares estimation of missing values.

Specification

The dependent variable contains the observed data.  Select the dependent
variable from the Variables list box and move it to the Dependent
Variables box.  If you specify more than one dependent variable, a separate
analysis is produced for each variable.  
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Models are specified in a manner similar to the usual algebraic expression
of analysis of variance models, such as those illustrated in Snedecor and
Cochran (1980).  Use the factor variables to list the terms in your model in
the AOV Model Statement box.  The terms are main effects, which are
entered as a single variable, and interaction terms, which are listed as a
group of factor variables combined using stars (e.g., TRT(BLK).  The high
order interaction term is assumed to be an error term and can often be
omitted from the model statement.  Other interaction terms can be indicated
as an error term by typing (ERROR) or (E) after the term (see examples 5
and 6 below).

Typically, the AOV Model Statement is simply typed in manually.  You can
also copy variables from the Variables list box to the current cursor position
of the AOV Model Statement by first highlighting one or more variables in
the Variables list, then pressing the right-arrow button next to the AOV
Model Statement.

For analysis of covariance, select the names of the variables you want to use
as covariates and move them to the Covariables list box.

Press the OK button to begin the analysis.  You’ll be offered additional
options once the analysis is specified and computed.

Example

Model

Statements

Model specification (list of main effects and interaction terms) is very
flexible and best illustrated by example.

Example 1: Completely randomized design, also called the one-way design
(see page 227 for a discussion of the CRD).  If the treatment factor is A, the
model is specified simply as:

  A

Example 2: Randomized complete block design (see page 229 for a
discussion of the RCB design).  BLK is the factor for blocks and A if the
treatment factor.

  BLK A

Example 3: Single-factor Latin square design (see page 232 for a discussion
of the Latin square design). The variables ROW and COL are the row- and
column blocking factors, and A is the treatment factor.

  ROW COL A
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Example 4: Three-factor factorial in a completely randomized design with
all two factor interactions (see page 238 for a discussion of factorial
designs). 

  A B C A*B A*C B*C

Note: The example factorial design above could be entered more concisely
using the ALL2 keyword discussed below.

  ALL2(A B C)

Example 5: Split-plot design (see page 241 for a discussion of the split-plot
design).  The variable REP is the factor for replication, A is the main-plot
factor, and B is the subplot factor.

  REP A REP*A(E) B A*B

Note the interaction REP*A is an error term.  The three factor interaction
term REP*A*B is also an error term, but was omitted above because
Statistix always adds the high order interaction term automatically.

Example 6: Strip-plot design (see page 243 for a discussion of the strip-plot
design).  The variable REP is the factor for replication, A is the main-plot
factor, and B is the subplot factor.

  REP A REP*A(E) B REP*B(E) A*B

Example 7:  One-way repeated measures design (see page 248 for a
discussion of repeated measures designs).  SUBJ is the subjects factor and
A is the within-subjects factor.

  SUBJ A

Example 8: Two-factor repeated measures design with a between-subjects
factor A and a within-subjects factor B.

  A SUBJ*A(E) B A*B

Examples 1 - 8 above are all models that could be more easily specified
using the specific AOV procedures discussed earlier in this chapter.  But the
General AOV/AOCV procedure allows you to specify other models,
including variations of the above models.

Example 9: A two-factor nested model with factor B nested within factor A.

  A B*A
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Compare the nested model with the two-factor cross-classified (factorial)
model:

  A B A*B

Example 10: A three-factor factorial experiment in a split-plot design.  The
factors A and B are both main-plot factors, and C is the subplot factor.

  REP A B A*B REP*A*B(E) C A*C B*C A*B*C

In most situations, neither the order in which terms are specified in the
model nor the order in which variables are specified within terms has any
influence on the analysis.  The only exception occurs in certain models with
multiple error terms, which are described next.

Error Term

Specification

The (ERROR) and (E) modifiers behind a term indicates that the term is to
be used as an error term for computing F tests.  Note that multiple error
terms can be specified, as in Examples 5, 6, 8, and 10 above.  If the highest
order interaction is not explicitly listed in the model, it’s automatically
added and is an error term.  For instance, in Example 5, the results would be
exactly the same if the model had been specified as:

  REP A REP*A(E) B A*B REP*A*B(E)

When multiple error terms are specified, an F test for a main effect or
interaction is based on the lowest order error term that includes the main
effect or interaction being tested.  The lines of an analysis of variance table
are organized so that an error term appears directly below the group of
terms that use it for the F tests.  See the sections for the split-plot design and
repeated measures design in this chapter for examples of analysis of
variance tables for models with multiple error terms.

Occasionally, there will be error terms of equal order that contain the term
for which a test is desired.  For example, consider the model:

  X1 X2 X1(X2(ERROR) X3 X2(X3(ERROR) X1(X3 X1(X2(X3(ERROR)

The second order error terms X1(X2 and X2(X3 both contain X2.  Which
term will be used to construct the F test for X2?  Statistix scans the model
from left to right.  When it encounters the first factor (X1), it assigns it the
name “A”.  The next factor encountered (X2) is assigned the name “B”, and
so on.  The error terms X1(X2 and X2(X3 are represented as AB and BC,
respectively.  To decide which term to use, Statistix always uses the one
with the lowest dictionary order, AB in this case.
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ALL Term

Specification

The ALL modifier is provided to simplify model specifications when you
want all subset interactions.  For example, the model 

  A ALL (B C D) 

is equivalent to

  A B C D B*C B*D C*D B*C*D

You can also use the ALL2 modifier to specify all terms up to and including
2-factor interaction terms.  So the model statement

  ALL2 (A B C) 

is equivalent to

  A B C A*B A*C B*C

The modifiers ALL3, ALL4, and ALL5 are defined in a similar manner.

Data

Restrictions

You can specify up to ten dependent variables.  Up to ten factors (control
and treatment variables) can be included in a model statement.  The
maximum number of levels for each factor is 200.  The factor variables can
be of any data type.  Real values are truncated to whole numbers and must
be no larger than 99,999.  Strings are truncated to ten characters.  Missing
values are allowed.  For unbalanced designs and designs with covariates,
the maximum size of the GLM design matrix is 500.  (The size of the design
matrix is equivalent to the model degrees of freedom: total degrees of
freedom minus error degrees of freedom.)

Pooling of

Sums of

Squares

Internally, the AOV is initially treated as if it’s a full factorial design; sums
of squares are computed for all possible terms.  Then if a term isn’t
included in a model, the sums of squares calculated for that term is pooled
in the lowest order interaction that contains that term as a subset.  For
example, in the model A B C A(B(C, the sums of squares for A(B, A(C,
and B(C are pooled with the A*B*C sums of squares.

Example The example data are from a two-factor factorial in a randomized block
design with two covariates (Steel and Torrie, 1980, p. 429).  The object of
the experiment was to study how forage fed to guinea pigs from four types
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INITIALWT  CONSUMED    WTGAIN       BLK      SOIL FERTILIZE

      220      1155       224         1         1         1

      222      1326       237         1         1         2

      198      1092       118         1         2         1

      205      1154        82         1         2         2

      213      1573       242         1         3         1

      188      1381       184         1         3         2

      256      1532       241         1         4         1

      202      1375       239         1         4         2

      246      1423       289         2         1         1

      268      1559       265         2         1         2

      266      1703       191         2         2         1

      236      1250       117         2         2         2

      236      1730       270         2         3         1

      259      1363       129         2         3         2

      278      1220       185         2         4         1

      216      1170       207         2         4         2

      262      1576       280         3         1         1

      314      1528       256         3         1         2

      335      1546       115         3         2         1

      268      1667       117         3         2         2

      288      1593       198         3         3         1

      300      1564       212         3         3         2

      283      1232       185         3         4         1

      225      1273       227         3         4         2

Analysis of Variance Table for WTGAIN  

Source           DF        SS        MS       F        P

BLK               2     395.4     197.7    0.46   0.6408
SOIL              3   59216.4   19738.8   46.12   0.0000
FERTILIZE         1    1850.6    1850.6    4.32   0.0597
SOIL*FERTILIZE    3    1136.6     378.9    0.89   0.4764
INITIALWT         1    1341.6    1341.6    3.13   0.1020
CONSUMED          1   10585.1   10585.1   24.73   0.0003
Error            12    5135.5     428.0
Total            23

Note: SS are marginal (type III) sums of squares

Grand Mean 200.42    CV 10.32

Covariate Summary Table

Covariate  Coefficient   Std Error        T         P

INITIALWT     -0.49430     0.27918    -1.77    0.1020
CONSUMED       0.15837     0.03184     4.97    0.0003

of soil at two levels of fertilization affected weight gain.  Animals were
selected for blocks based on initial weight.  The initial weights of each
subject were also used as a covariate for error control and to adjust the
means.  The second covariate, forage consumed, is affected by the
treatments and is included to help interpret the data.  The data are listed
below and are stored in the file Sample Data\forage.sx.

The analysis is specified on page 252. The results are shown below.

The F tests are significant for both soil types and fertilizer level.  In an
analysis with covariates, the F tests test the adjusted means.  For example,
the null hypothesis that the means for soil type, adjusted for initial weight
and forage consumed, are equal is rejected (p = 0.0000).
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The covariates INITIALWT and CONSUMED also appear in the analysis
of variance table.  The F tests for the covariates test the hypothesis that the
regression coefficients for the covariates are zero, given that all other
analysis of variance and covariance terms are in the model.  The t tests
listed in the covariate summary test the same hypothesis.  Initial weight is
not significant, but nearly so (p = 0.1020).  Foraged consumed is highly
significant (p = 0.0003).  The negative coefficient for INITIALWT means
that guinea pigs with lower initial weights gained more weight than those
with higher initial weights.  Weight gain increased with forage consumed.

Computation-

al Notes

Oliver’s (1967) generalization of Yates’ algorithm (Daniel, 1976) is used
for balanced designs.  An algorithm similar to Cooper’s (1968) is used to
generate orthogonal polynomials.  Unbalanced designs are computed using
general linear models (Searle, 1987; Glantz and Slinker, 1990). 

AOV Results Menu

After the initial analysis of variance is completed and displayed, a Results
menu appears on the menu at the top of the Statistix window.  This menu is
displayed below.

This results menu is available for all the analysis of variance procedures
discussed in this chapter.  Select AOV Table from the menu to redisplay the
initial AOV results.  Select Options to return to the dialog box used to
specify the model.  The remaining results options are described on the
following pages.
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Means of WTGAIN for SOIL  

SOIL  N    Mean      SE

   1  6  259.60  8.5942
   2  6  126.55  8.4855
   3  6  186.16  9.3343
   4  6  229.36  9.1457

Means of WTGAIN for SOIL*FERTILIZE

SOIL FERTILIZE  N    Mean      SE

   1         1  3  266.01  12.079
   1         2  3  253.19  12.918
   2         1  3  144.83  12.770
   2         2  3  108.26  12.445
   3         1  3  200.65  13.987
   3         2  3  171.67  11.963
   4         1  3  228.98  14.269
   4         2  3  229.74  15.153

Means and Standard Errors

Single-factor procedures, such as the Completely Randomized Design and
the Randomized Complete Block Design display a table of treatment
means along with the analysis of variance table.  Select the Means and
Standard Errors procedure from the results menu to compute least squares
means for the remaining procedures.  

The dialog box list terms in the model available for computing means and
standard errors.  Error terms aren’t listed.  The dialog box for the guinea pig
forage example discussed on page 256 is shown below.

The main effect SOIL and the two-factor interaction SOIL*FERTILIZE
have been selected and moved to the Terms Selected for Means box.  The
results are shown below.

The means are least squares estimates based on the model, so they won’t be
the same as the arithmetic means for unbalanced designs or designs with
covariates.  The means for analyses with covariates, such as those in this

Chapter 7, Analysis of Variance 259



example, are adjusted for the covariates. 

The standard error of a mean is computed using the mean square for error
from the error term associated with it from the original AOV table.  The
calculations for the standard errors incorporate the sample sizes and the
covariate means, which explains why the standard errors aren’t all the same
in this example.  For balanced designs without covariates, the standard
errors are all the same, and the report format is different from the one
above.

The standard error for the difference of two means is included in the report
for balanced designs without covariates.

Multiple Comparisons

You will often be interested in comparing means for different levels of a
main effect or interaction.  This is the function of multiple comparisons
procedures.  Multiple comparisons are divided into three categories: all-
pairwise comparisons, comparisons with a control, and comparisons with
the best.  Statistix offers tests for all three types of comparisons.

All-pairwise Multiple Comparisons

Two means are said to be similar, or homogeneous, if they’re not
significantly different from one another.  This procedure identifies groups
(subsets) of similar, or homogeneous, means.  Use of the procedure is first
illustrated with an example, and then some details of its application are
discussed.

We’ll use the randomized complete block example from page 230, where
the treatment factor TRT was the type of fungicide applied to batches of
100 soybeans.  TRT has five levels; the first is a no-fungicide control, and
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Tukey HSD All-Pairwise Comparisons Test of FAILURES for TRT

TRT        Mean  Homogeneous Groups

Control  10.800  A
Fung #2   8.200  AB
Fung #3   6.600  AB
Fung #1   6.200   B
Fung #4   5.800   B

Alpha              0.05     Standard Error for Comparison  1.4711
Critical Q Value  4.333     Critical Value for Comparison  4.5072
Error term used: BLK*TRT, 16 DF
There are 2 groups (A and B) in which the means
are not significantly different from one another.

the remaining four are different types of fungicide.  The dependent variable
FAILURES is the number of beans out of 100 that failed to sprout.  

First select the main effects and/or interactions for which you want
comparisons and move them to the Terms Selected for Mean Comparisons
box.  Next select a comparison method by clicking on one of the five
Comparison Method radio buttons.  Enter a value for the rejection level in
the Alpha edit control.  Select the report format (examples of both formats
are given below).

The example dialog box above is used to compute Tukey’s HSD
comparisons for treatments using 0.05 for the rejection level.  The results
are shown below.

The second column of the results shows the means of FAILURES for the
levels of the factor TRT.  The means have been sorted in descending order
so the largest one is listed in the first row, the next to largest in the second
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Tukey HSD All-Pairwise Comparisons Test of FAILURES for TRT

TRT        Mean Control  Fung #1  Fung #2  Fung #3

Control  10.800  
Fung #1   6.200   4.600*
Fung #2   8.200   2.600    2.000 
Fung #3   6.600   4.200    0.400    1.600 
Fung #4   5.800   5.000*   0.400    2.400    0.800 

Alpha              0.05     Standard Error for Comparison  1.4711
Critical Q Value  4.333     Critical Value for Comparison  4.5072
Error term used: BLK*TRT, 16 DF

row, and so on.

The columns of the letters A and B under the heading “Homogenous
Groups” indicate which means are not significantly different from one
another.  There are two columns in the example since there are two groups
of similar or homogenous means.  The first group contains the means for the
control and fungicides 2 and 3.  The second group contains the means for
fungicides 1 and 4.  As you see in this example, it’s not unusual for the
groups to overlap, although they need not.  There are two pairs of means
that are different in this example.  The mean for the control group is not in
group B, and the means for fungicides 1 and 4 is not in group A.  So the
mean of the control are different than the means for fungicides 1 and 4.

Many people prefer the triangular matrix report format because it’s easier to
identify means that are significantly different.  This report format for the
same data is shown below.

The treatment levels are listed along the top and down the left side of the
table.  The values in the body of the table are differences between pairs of
means.  The critical value for a comparison, 4.5072, is the minimum
difference between two means needed for significance.  Pairs that are
significantly different are flagged with an asterisk.  

It’s easy to use this figure to construct confidence intervals for the
differences of any two means.  Suppose you were interested in 95%
confidence bounds around the difference of fungicides 2 and 4.  Simple
subtract and add the critical value of the comparison from the difference:
2.400 ± 4.5072 = -2.1072 to 6.9072.  Note that the confidence interval
contains zero, which is expected since difference was not significant.

All-pairwise

Comparison

It’s important you understand the difference between (1) the hypotheses
being tested by the overall F test for a main treatment effect in analysis of
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Methods variance and (2) the hypotheses being tested by pairwise comparisons
procedures.  A contrast is any linear combination of treatment means such
that the linear coefficients sum to zero (see Contrasts on page 269).  A
pairwise comparison of two means is a special case of a contrast where the
contrast coefficients are 1 and -1 for the means being compared, and 0 for
all other means.  

The overall F test for a treatment effect in AOV is testing the hypothesis
that all of the means are equal.  You can think of it as a test of whether all
possible contrasts are zero.  If the overall F is significant, it means that there
is some contrast that’s significant, but it doesn’t guarantee that any pairwise
comparison is particularly important.  The set of pairwise comparisons is a
small subset of the entire set of all possible contrasts.  The F test has to be a
conservative test because it must guard against type I errors (rejecting a null
hypothesis when it’s true) over the entire set of all possible contrasts, not
just the smaller subset of pairwise comparisons.  If you’re interested only in
the set of pairwise comparisons, you can construct a more powerful test
than the overall F test over this restricted space.  

If you’re interested in a single comparison of two means, the most powerful
procedure is the T test.  For a single such comparison, the probability of
falsely rejecting a true null hypothesis (type I error) is whatever the signifi-
cance level of the T test is.  Suppose that there are two comparisons of inte-
rest to you.  Suppose you test each one at the level α with a T test.  The pro-
bability of making a type I error in each comparison is α, so the probability
of making at least one type I error over both comparisons  is greater than α. 
As the number of comparisons grows,  the probability of making at least
one type I error grows toward 1.  This probability of making at least one
type I error for all comparisons is called the experimentwise error rate, in
contrast to the comparisonwise error rate.  The T test controls the
comparisonwise error rate at α but allows the experimentwise error rate to
increase as the number of comparisons increases.  Experimentwise error
rate refers to the maximum experimentwise error rate under a complete or
partial null hypothesis.  Under a complete null hypothesis, all the
population means are equal; under a partial null hypothesis, only some of
the population means are equal.

If there are P means, there are m = P(P-1)/2 pairwise comparisons, so the
number of comparisons grows rapidly as the number of means increases. 
Some control over the experimentwise error rate is desirable.  Numerous
methods have been proposed for this, and there is some disagreement as to
the best procedures.  The following discussion describes the procedures
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available in Statistix.

i j First, some terminology:  Suppose M and M are two means.  The compari-

ij i json between means I and j is L = M - M .  For a complete, balanced AOV,

ij ijthe standard error of L is SE(L ) = (2(MSE/n) , where MSE is the mean½

square for error and n is the number of samples present at a level of the

ijfactor of interest.  For the comparison L  to be significant, its absolute value
must exceed some critical value C, where C depends on the method of
comparison being used.  Confidence intervals for a comparison are

ijcomputed as L  ± C.

The most powerful (least conservative) comparison procedure is the LSD,
or Least Significant Difference method.  The critical value for a comparison

ijis SE(L ) T, where T is Student’s t-statistic for the degrees of freedom
associated with MSE.  This method is also called the T method.  LSD
controls the comparisonwise error rate at α but allows the experimentwise
error rate to increase as the number of comparisons increases.  Some
advocate using this method only if the overall F test is significant, leading
to what has sometimes been called the PSD, or Protected Significant
Difference.  Contrary to what has sometimes been claimed, the PSD method
does not control the experimentwise error rate if there are more than three
levels for the factor of interest. 

As we noted earlier, the overall F test is testing a much broader range of
hypotheses than a multiple comparison test and so it must be more conser-
vative.  If the set of pairwise comparisons are of primary interest, then the
so-called protected approach (proceeding only if the overall F is significant)
can be refuted to some extent regardless of the comparison method because
the F test sacrifices power to test hypotheses that are not of direct interest. 
However, such cases are probably exceptions rather than the rule.  

You should use the LSD method if there are a few preplanned comparisons
that are of primary interest.  However, inspecting the means for large
differences before deciding which comparisons to make invalidates its use. 
The LSD procedure is the most powerful pairwise comparison procedure,
but it will generally have the highest experimentwise error rate.  We
mentioned earlier that the LSD approach controls the comparisonwise error
rate at α.  If you use the LSD method and report significant comparisons,
you should be prepared to justify why you didn’t find it necessary to control
the experimentwise error rate.

The LSD procedure can be modified to prevent the experimentwise error
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from growing as the number of comparisons increases.  The general idea is
to make it more difficult to reject as the number of comparisons increases,
which can be done by increasing the critical value of T as the number of
comparisons increases.  Suppose T(p) is the T value corresponding to a two-
tailed significance level of p for Student’s t.  For the LSD procedure, p is
the constant α.  To control the experimentwise error rate, p should be some
decreasing function of m, where m is the number of comparisons.  Two
common methods for this are Bonferroni’s and Sidak’s.  Bonferroni’s—
probably the more popular of the two—uses the function p = α/m, and
Sidak’s uses the function p = 1 - (1 - α) .  Using either of these methods1/m

results in an experimentwise error rate of less than α.  The problem with
these procedures is they rapidly grow conservative as m increases; in effect,
the experimentwise error rate is reduced too much and real differences do
not get detected (test power is lost).   Bonferroni’s is generally more
conservative than Sidak’s.  Because of rapidly decreasing power, these
procedures are not recommended for general use although they can be
useful when the number of means, and hence the number of comparisons, is
small.

Tukey’s method is the most useful pairwise comparison procedure Statistix
performs.  It controls the experimentwise error rate, yet still retains good
power.  It’s based on the Studentized range statistic.  Suppose there are P

(1) (P) means for the factor of interest, with X being the smallest and X being
the largest.  The standard error of a mean is (MSE/n) , where MSE is the½

mean square for error and n is the number of samples within each level.  (In

ijterms of SE(L ), which is displayed by Statistix, the standard error of a

(1) (P)mean is SE(Lij)/(2 ).)  Under the usual assumptions, the statistic (X -X )1/2

/ (MSE/n)  then has a Studentized range distribution if there are no differ-½

ijences between the population means.  The critical value for a comparison L
is C = (MSE/n) Q(P,DF), where Q(P,DF) is the Studentized range value for½ 

P means and DF degrees of freedom (degrees of freedom associated with
MSE) at the desired rejection level α.  Tukey’s procedure may find signifi-
cant comparisons even if the overall F test is not significant because
Tukey’s test restricts itself to the pairwise comparison subset of contrast
space.  This is mentioned because it helps in deciding whether to use
Tukey’s procedure or Scheffe’s procedure.  

Basically, Scheffe’s procedure treats pairwise comparisons as “just another
contrast”.  Suppose you’ve just observed a significant overall F.  Clearly
you’d be interested in investigating the pattern(s) among the means that
produced this result.  In this context, pairwise comparisons are just one of
any number of contrasts that may interest you; you are interested in general
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“data-snooping”.  Scheffe’s procedure controls the experimentwise error
rate, but here the “experiment” is not just the m = P(P-1)/2 comparisons but
all possible contrasts.  The price you pay for such general protection is that
Scheffe’s procedure is more conservative than Tukey’s; it will not detect
some differences between means that Tukey’s will.  If the overall F test was
not significant, Scheffe’s comparisons will never be significant either.  The

ijcritical value for Scheffe’s is C = SE(L ) [(P-1) F(P-1, DF)] , where F(P-1,½

DF) is the appropriate F value.

Two comparison procedures that are very popular in the natural sciences
and other areas are Duncan’s New method and the Student-Newman-
Keuls, or SNK, method.  These procedures are not recommended and
Statistix doesn’t compute them.  Duncan’s New method controls the
comparisonwise error rate at α and generally gives results similar to the
LSD procedure.  The SNK procedure doesn’t control the experimentwise
error rate under a partial null hypothesis and cannot be recommended (Einot
and Gabriel 1975).  There are a number of procedures more powerful than
Tukey’s that still control the experimentwise error rate (Ryan 1960, Einot
and Gabriel 1975, Welsch 1977, Begun and Gabriel 1981).  Like Duncan’s
New and SNK, these procedures are multiple-stage tests,  which means the
critical value doesn’t remain constant for all comparisons but rather varies
as the homogenous subsets are constructed.  The disadvantages of such
multiple-stage procedures are that they’re more complex to explain and
compute and, in particular, do not permit the construction of confidence
intervals, which is often useful when you present your results.  

The basis for deciding which procedure to use is somewhat subjective and
philosophical.  Hsu (1996) recommends Tukey’s method (also called the
Tukey-Krammer method when used for unbalanced data) for preplanned all-
pairwise comparisons.

Comparisons

of Means -

Computation-

al Notes

Statistix computes quantiles for Student’s t distribution using a procedure
patterned after Hill (1970).  Quantiles for the F distribution are found by
finding the inverse of the corresponding beta distribution using Newton’s
method.  The algorithm used to perform this is similar to Majumder and
Bhattacharjee’s (1973), although a different procedure, described in
Probability Functions (Chapter 12), is used to compute the cumulative
distribution function of the beta distribution.  The quantiles for the
Studentized range distribution are computed with a procedure patterned
after Lund and Lund (1983).
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Multiple Comparisons with a Control

This procedure makes use of Dunnett’s test for comparing all treatment
means with the mean of a control.  This test is more powerful than using
Tukey’s all-pairwise test because there are fewer comparisons.

We’ll use the randomized complete block example from page 230, where
the treatment factor TRT was the type of fungicide applied to batches of
100 soybeans.  TRT has five levels; the first is a no-fungicide control, and
the remaining four are different types of fungicide.  The dependent variable
FAILURES is the number of beans out of 100 that failed to sprout.

First select the main effect or interaction for which you want comparisons
and move it to the Term Selected for Mean Comparisons box.  Next enter
the value of the level that identifies the control treatment.  If you’re testing
an interaction term, enter one value for each factor in the term, separated by
commas.  Enter a value for the rejection level in the Alpha edit control. 
Select an Alternate Hypothesis.  Select “not equal to the control” to
perform the two-sided test.

The results for the analysis specified in the example dialog box above are
shown on the next page.

The table displays the difference between the control mean and the
remaining means.  Means significantly different from the control mean
(differences significantly different from zero) are flagged with an asterisk. 
95% simultaneous confidence interval of the mean differences are also
displayed.
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Two-sided Dunnett's Multiple Comparisons with a Control of FAILURES

Control: TRT=Control

Simultaneous 95% confidence intervals of treatment mean - control mean

                      Lower                  Upper

TRT         Mean      Bound  Difference      Bound

Control   10.800
Fung #1    6.200     -8.584     -4.600*     -0.616
Fung #2    8.200     -6.584     -2.600       1.384
Fung #3    6.600     -8.184     -4.200*     -0.216
Fung #4    5.800     -8.984     -5.000*     -1.016

Alpha              0.05     Standard Error for Comparison  1.4711
Critical D Value  2.708     Critical Value for Comparison  3.9839
Error term used: BLK*TRT, 16 DF

See Hsu (1996) for computational details.

Multiple Comparisons with the Best

This procedure makes use of Hsu’s test for multiple comparisons with the
best (Hsu, 1996).  It’s useful when you’re most interested in identifying
those treatments that may provide the best result.  This test is more
powerful than using Tukey’s all-pairwise test because there are fewer
comparisons.

First select the main effect or interaction for which you want comparisons
and move it to the Terms Selected for Mean Comparisons box.  Enter a
value for the rejection level in the Alpha edit control.  Select a value for
what constitutes the Best Mean: the one with the largest value, or the one
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Hsu's Multiple Comparisons with the Best of FAILURES for TRT

Simultaneous 95% confidence intervals of mean - smallest of other means

                      Lower                  Upper

TRT         Mean      Bound  Difference      Bound

Control   10.800      0.000      5.000*      8.447
Fung #1    6.200     -3.047      0.400       3.847
Fung #2    8.200     -1.047      2.400       5.847
Fung #3    6.600     -2.647      0.800       4.247
Fung #4    5.800     -3.847     -0.400       3.047

Alpha              0.05     Standard Error for Comparison  1.4711
Critical D Value  2.343     Critical Value for Comparison  3.4468
Error term used: BLK*TRT, 16 DF

with the smallest value.

We’ll use the randomized complete block example from page 230, where
the treatment factor TRT was the type of fungicide applied to batches of
100 soybeans.  The dependent variable FAILURES is the number of beans
out of 100 that failed to sprout.  The results for the analysis specified in the
dialog box one the preceding page are shown below.

The table displays the difference between each mean and the best (lowest in
this example) of the remaining means.  Means significantly different from
the best mean are flagged with an asterisk.  95% simultaneous confidence
interval of the differences from the best are also displayed.

 See Hsu (1996) for computational details.

Contrasts

This powerful option computes any linear contrast for any effect or
interaction.  Linear contrasts are linear combinations of the means for any
effect or interaction, and they’re valuable for examining the “fine structure”
of the data after the overall F test indicates that the effect or interaction is
significant.

Suppose, in the randomized block example on page 230, you’re interested in
whether the mean for the control (no fungicide) is different from the mean
of the four treatments (fungicides applied).  To make this comparison, you
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enter “4 -1 -1 -1 -1" for the contrast coefficients.

To specify the general contrast, first select the main effect or interaction for
which you want to construct contrasts and move it to the Contrast Term
box—TRT in our example.

You can specify up to five contrasts at once.  The coefficients entered must
sum to 0, but their absolute values don’t matter.  The coefficients can be
entered as integer or real values.  The ordering of the coefficients is
determined by the values used to represent the levels of the factors.  In our
example, the no-fungicide control is represented in the variable TRT as 1,
the four fungicides are represented as 2, 3, 4, and 5.  The list of coefficients
“4 -1 -1 -1 -1" can be abbreviated using a repeat factor:  4 4(-1).  When
entering coefficients for an interaction term, you enter them in the order
with rightmost subscripts changing fastest (in the same order that means are
listed using the Mean and Standard Errors procedure). 

The results are for the example specified above are presented on the next
page.
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AOV Contrasts of FAILURES by TRT  Fungicide treatments

Contrast Coefficients: 4 -1 -1 -1 -1

Contrast           16.400         SS (Contrast)       67.240
Scheffe's F          3.11         P (Scheffe's F)     0.0453
T-Statistic          3.53         P (T-Statistic)     0.0028
SE (Contrast)      4.6519

Error term used: BLK*TRT, 16 DF

Scheffe’s F method of significance testing for arbitrary simultaneous
contrasts is used to test the hypothesis that the contrast is zero.  The contrast
in the above example is seen to be significant at the 5% level (p = 0.0453). 
Scheffe’s procedure is appropriate for any number of a posteriori contrasts,
which means it can be used to test hypotheses that arise after the data are
collected and inspected.  It protects you from making too many type I errors
(rejecting a correct null hypothesis) during such “data-snooping”.  In the
example output on the preceding page, the sum of squares due to contrast is
computed in the usual way, as illustrated in Sections 12.7 and 12.8 of
Snedecor and Cochran (1980).  The computational methods used are
discussed in Section 6.4 of Scheffe (1959).

The statistic Scheffe’s F is computed as SSC/(DF(MSE), which is
equivalent to L /(DF(SE(L) ), where SSC is the sum of squares due to the2 2

contrast, MSE is the mean square for error, L is the value of the contrast,
SE(L) is the standard error of the contrast, and DF is the degrees of freedom
associated with the contrast.  The same error term is used as would be used
for the F test in the original AOV table.  Scheffe’s F will not be computed
for contrasts of interaction terms in models that have multiple error terms;
neither will it be computed for terms used as error terms in the model.  

In addition to Scheffe’s F method, Student’s t test is performed.  Student’s t
test is appropriate for a priori tests (contrasts that had been planned before
the data were inspected).  Student’s t test doesn’t control the experiment-
wise error rate, as we discussed in the comparisons of means section (page
263).  Student’s t-statistic is computed as L/SE(L).

By Variable It’s possible to compute contrasts for a term in the model, but at each level
of another factor in the model.  Using the guinea pig forage example from
page 256, we’ll compute a contrast for comparing soil types 1 and 2, at each
level for the factor FERTILIZE (1 = not fertilized, 2 = fertilized).  This is
specified in the dialog box on the next page.  
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AOV Contrasts of WTGAIN by SOIL for FERTILIZE

Contrast Coefficients: 1 -1 0 0

FOR FERTILIZE = 1
Contrast           121.17         SS (Contrast)        22024
Scheffe's F         17.15         P (Scheffe's F)     0.0001
T-Statistic          7.17         P (T-Statistic)     0.0000
SE (Contrast)      16.894

FOR FERTILIZE = 2
Contrast           144.93         SS (Contrast)        31508
Scheffe's F         24.53         P (Scheffe's F)     0.0000
T-Statistic          8.58         P (T-Statistic)     0.0000
SE (Contrast)      16.896

Error term used: BLK*SOIL*FERTILIZE, 12 DF

The results are presented below.

The contrast for the FERTILIZE=1 test is computed using the means for the
SOIL* FERTILIZE interaction, but only using the means for the not
fertilized cells.  The contrast for the FERTILIZE=2 test is computed using
only the means for the fertilized cells.
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Polynomial Contrasts of TONS by DATE  Date of harvest

Degree = 1, Linear Trend

Contrast           0.3073         SS (Contrast)       1.7003
Scheffe's F         20.27         P (Scheffe's F)     0.0000
T-Statistic          7.80         P (T-Statistic)     0.0000
SE (Contrast)      0.0394

Degree = 2, Quadradic Trend

Contrast          -0.1200         SS (Contrast)       0.2594
Scheffe's F          3.09         P (Scheffe's F)     0.0363
T-Statistic         -3.05         P (T-Statistic)     0.0039
SE (Contrast)      0.0394

Degree = 3, Cubic Trend

Contrast           0.0123         SS (Contrast)     2.72E-03
Scheffe's F          0.03         P (Scheffe's F)     0.9920
T-Statistic          0.31         P (T-Statistic)     0.7565
SE (Contrast)      0.0394

Error term used: BLK*VAR*DATE, 45 DF

Polynomial Contrasts

This option computes the polynomial decomposition of the sums of squares
for any main effect.  This is very useful for determining the existence and
nature of trends in the treatment level means.

In the split-plot example on page 242, we’re interested in examining the
trends of yield TONS as a function of cutting date DATE.  In the dialog box
above, we’ve entered DATE for the Contrast Term and entered a value of 3
for Degree.

By specifying polynomials up to degree 3 be computed, we will get sums of
squares for linear (degree 1), quadratic (degree 2), and cubic (degree 3)
trends due to DATE.  The results are shown below.

Strong support exists for a linear trend with DATE (p = 0.0000) in the
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example.  The positive value for the contrast (0.3073) indicates that TONS
increase with increasing DATE.  There also appears to be some evidence of
a quadratic trend in addition to the linear trend.  Perhaps this indicates that a
date before November 10 should have been used as the end of the effective
growing season.  For example, if you use October 15 instead (DATE = 80
instead of 106), the linear trend is stronger and the quadratic trend
disappears.

Remember that the actual spacings of the treatment levels are used to
compute polynomial contrasts.  Because calculating unequally spaced
polynomials can be quite tedious, researchers commonly ignore the unequal
spacing of levels and treat them as equally spaced, even though this can
result in substantial errors.  As the example shows, the choice of level
spacings can have considerable influence on the results.  Because of the
ease with which this option can handle unequal spacings, there is little
excuse for not using them.

Plots

The Plots submenu offers an option to plot means for main effects and two-
factor interactions, and two plots for examining the residuals.

The Normal Probability Plot plots the residuals against the rankits.  Plots
for normal data form a straight line.  The Shapiro-Wilk statistic for
normality is also reported on the plot.  See Chapter 9 for details.

The Resids By Fitted Values plot is useful for examining whether the
variances are equal among the groups.  If the order of the groups is
meaningful, then systematic departures from equality can be seen in the
plot.

We’ll illustrate the Means Plot using the two-factor repeated measures
example discussed on page 250.  We’re interested in looking at how alcohol
affects the aggressiveness of people with and without antisocial personality
disorder (ASP). 
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A mean plot plots the dependent variable along the Y axis.  The factor you
specify in the Means Factor box is plotted along the X axis.  If you specify
a By Factor, one line-plot of means are plotted for each level of the factor
specified. The Means Factor is limited to 30 levels.  The By Factor is
limited to 6 levels.

Next select the Plot Type, either bar chart or line chart.  The bar chart uses
vertical bars to represent the means.  The line chart uses circles to mark the
means, and the circles are connected sequentially with lines.

You can enter Low, High, and Step values to control the Y axis scale.  You
can use this feature to create a meaningful interval width and interval
boundaries.

The means plot for the alcohol example specified above is shown on the
next page.

Recall that the F test for the P_TYPE*DRINK interaction was significant. 
The means plot shows that while aggressiveness increases for both
personality types while drinking alcohol, the increase is more dramatic for
the subjects diagnosed with ASP.
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If you specified more than one dependent variable for your analysis of
variance, you view a plot for one dependent variable at a time.  Arrows
appear on the toolbar, as shown below.

Press the right-arrow button on the toolbar to display the plot for the next
dependent variable.  Press the left-arrow button to display the plot for the
previous dependent variable.

The Titles procedure on the Plots menu is used to changes the titles of the
plot displayed.  The Graph Preferences procedure is used to change details
of the plot, such as font and symbol type.  See Chapter 1 for details.
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Save Residuals

Select Save Residuals to compute the residuals, fitted values, or adjusted
data for a particular model and store them for later examination.  An
example dialog box is shown below.

You can type in the names of new variables in the spaces provided, or you
can click on the down arrow to select the name of an existing variable from
a drop down list.

The residuals are used to evaluate how well a model fits the data.  A
residual is defined as the difference between the actual observed response
and that predicted by the fitted model.  Residuals can help detect bad values
(outliers) and can also help suggest more appropriate models or
transformations to apply.  Consult Daniel (1976) for more detail.

The Adjusted Data Variable option is only available when you included
covariates in the model using the General AOV/AOCV procedure.  The
adjusted data are the dependent variable data adjusted for the values for the
covariates on a case by case basis.

If you specified more than one dependent variable for your analysis of
variance, you can only save the residuals for the first dependent variable
listed.
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C        H        A        P        T        E        R

8

Association Tests

Statistix offers many association tests that can be used to examine the
similarity or association among two or more variables.  

The Multinomial Test is a goodness-of-test that tests how well frequencies
of mutually exclusive categories fit a hypothesized distribution.

The Chi-Square Test computes the traditional chi-square goodness-of-fit
test for two-way tables.  Two hypotheses can be examined with this test: the
hypothesis of independence, and the hypothesis of homogeneity.
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The Kolmogorov-Smirnov Test is useful for comparing the similarity of
the distributions of samples from two populations.  If there is an intrinsic
ordering to the categories, the Kolmogorov-Smirnov test is usually better
than the chi-square test because it can exploit the information in the
ordering while the chi-square analysis cannot.

The McNemar’s Symmetry Test is a goodness-of-fit test that’s often
useful for measuring change.  It’s used to analyze square contingency
tables; often the rows represent classifications before some event, while the
columns represent the same classes after some event.  Individuals may be in
one class before the event but in another class after the event.  However, if
the table is symmetric about the diagonal from the upper left to the lower
right, there will be no net shift in the row and column proportions before
and after.  McNemar’s test examines whether the table is in fact symmetric.

The Two by Two Tables procedure computes a variety of tests of associa-
tion for two by two contingency tables.  A typical example of a two by two
table is where a number of individuals are cross-classified by two
dichotomous variables, such as treated-not treated and survived-died.  The
tests include Fisher’s exact test, Pearson chi-square, log odds ratio, and
others, along with standard errors.  

The Log-Linear Models procedure is a powerful tool for analyzing discrete
multidimensional categorical data.  Log-linear models are the discrete data
analogs to analysis of variance.  If a set of discrete data has more than two
classifying variables, you may be tempted to analyze such data as a series of
two-way tables with traditional chi-square tests.  However, the danger of
such an approach is that collapsing the data over some categorical variables
results in these variables becoming confounded with the remaining two
categorical variables.  Log-linear models allows all dimensions of
multidimensional contingency tables to be treated simultaneously and so
avoids such potential confounding.  

The Correlations procedure measures the degree of linear association
between two variables.  The Partial Correlations procedure allows you to
examine the degree of linear association between two variables after the
effect of other variables have been “adjusted out”.  These procedures also
appear on the Linear Models menu and are discussed in Chapter 6.

The Spearman Rank Correlations procedure produces nonparametric
correlation coefficients that are suitable for examining the degree of
association when the samples violate the assumption of bivariate normality.
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TYPE                  OBSERVED  EXPECTED

green                      773         9

golden                     231         3

green-striped              238         3

golden-green-striped        59         1

Multinomial Test

The Multinomial Test is a goodness-of-test that tests how well frequencies
of mutually exclusive categories fit a hypothesized distribution.  For
example, it can be used to test whether or not a sample of 100 rolls of a die
support the hypothesis that each number is equally likely to be rolled.  The
large-sample chi-square approximation is used for this test.

Specification

The test requires two variables.  The Hypothesized Proportions Variable
contains the list of hypothesized proportions.  The values can be entered as
proportions that sum to 1, or on any arbitrary scale such that the relative
values represent the hypothesized proportions.  The Observed Frequencies
Variable contains the corresponding list of observed frequencies.

Example In crosses between two types of maize, four distinct types of plants were
found in the second generation (Snedecor and Cochran, 1980): green,
golden, green-striped, and golden-green-striped.  According to a simple type
of Mendelian inheritance, the probabilities of obtaining these four types of
plants are 9/16, 3/16, 3/16, and 1/16.  The frequencies tabulated for a
sample of 1301 plants, and the expected ratios, are listed below.

The analysis is specified using the dialog box above.  The results appear on
the next page.
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Multinomial Test

Hypothesized Proportions Variable: EXPECTED 
Observed Frequencies Variable:     OBSERVED 

         Hypothesized  Observed    Expected    Chi-Square

Category  Proportion   Frequency   Frequency  Contribution

    1       0.56250       773       731.81         2.32
    2       0.18750       231       243.94         0.69
    3       0.18750       238       243.94         0.14
    4       0.06250        59        81.31         6.12

Overall Chi-Square     9.27
P-value              0.0259
Degrees of Freedom        3

The p-value for the overall chi-square test is 0.0259, so we reject the null
hypothesis that the 9:3:3:1 ratio is correct.  We see from the chi-square
contribution column that category 4 gives the largest contribution to chi-
square.  The original researcher noted that the golden-green-striped plants
were not vigorous due to their chlorophyll abnormality.

Chi-Square Test

The Chi-Square Test procedure is used to analyze two-dimensional tables
of discrete data.  Two hypotheses can be examined; the hypothesis of
independence examines whether the row-classifying variable acts
independently of the column-classifying variable, and the hypothesis of
homogeneity tests whether the relative frequency distributions for each of
the rows or columns are the same.  The appropriate hypothesis choice
depends on how the sampling was performed.  The calculations involved
are identical for the two tests.

Specification The analysis can be specified in two ways, depending on how you choose to
enter the data.  If you enter the data in columns using two categorical
variables to identify the rows and columns, select the Categorical method
and identify the two classifying variables and, optionally, a dependent
variable containing counts.  You can also enter the data in as a two-
dimensional table, with variables identifying the columns and cases
identifying the rows.  This is called the Table method.
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Select either the Categorical or the Table method that fits the way your data
have been entered.  Using the Categorical method, select the classifying
variable that identifies the rows of the contingency table and move it to the
Row Variable box.  Select the variable that identifies the columns and move
it to the Column Variable box.  If each case represents one observation,
don’t select a Counts Variable.  If the data are summarized, select the
variable that contains the counts for each case.

Using the Table method, select the variables that will represent the columns
of the contingency table and move them to the Table Variables box.

Data

Restrictions

Example

No more than 500 row categories and 500 column categories are allowed. 
Missing values are not permitted.  The count data must be nonnegative
integer values.

We use the data from Table 8.2-1 in Bishop, Fienberg, and Holland (1975)
for our example.  The data are the results of vision tests for 7,477 women. 
The variables LEFT and RIGHT are the scores for the left and right eyes,
respectively.  Each eye was assigned a score 1, 2, 3, or 4.  The counts that
fall in each of the cells of the contingency table are in the variable
COUNTS.  The data are presented on the next page, an are stored in the file
Sample Data\vision.sx
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CASE    COUNTS      LEFT     RIGHT

   1      1520         1         1

   2       234         1         2

   3       117         1         3

   4        36         1         4

   5       266         2         1

   6      1512         2         2

   7       362         2         3

   8        82         2         4

   9       124         3         1

  10       432         3         2

  11      1772         3         3

  12       179         3         4

  13        66         4         1

  14        78         4         2

  15       205         4         3

  16       492         4         4

Chi-Square Test for Heterogeneity or Independence

for COUNTS = LEFT RIGHT

                                      RIGHT   

LEFT                  1           2           3           4    

                +-----------+-----------+-----------+-----------+
1      Observed |  1520     |   234     |   117     |    36     |   1907
       Expected |   503.98  |   575.39  |   626.40  |   201.23  |
    Cell Chi-Sq |  2048.32  |   202.55  |   414.25  |   135.67  |
                +-----------+-----------+-----------+-----------+
2      Observed |   266     |  1512     |   362     |    82     |   2222
       Expected |   587.22  |   670.43  |   729.87  |   234.47  |
    Cell Chi-Sq |   175.72  |  1056.38  |   185.41  |    99.15  |
                +-----------+-----------+-----------+-----------+
3      Observed |   124     |   432     |  1772     |   179     |   2507
       Expected |   662.54  |   756.43  |   823.48  |   264.55  |
    Cell Chi-Sq |   437.75  |   139.14  |  1092.53  |    27.66  |
                +-----------+-----------+-----------+-----------+
4      Observed |    66     |    78     |   205     |   492     |    841
       Expected |   222.26  |   253.75  |   276.25  |    88.75  |
    Cell Chi-Sq |   109.86  |   121.73  |    18.38  |  1832.37  |
                +-----------+-----------+-----------+-----------+
                   1976        2256        2456         789         7477

Overall Chi-Square  8096.88
P-Value              0.0000
Degrees of Freedom        9

Cases Included 16    Missing Cases 0

The analysis is specified on the preceding page.  The results are displayed
below. 

In each cell, the original observed value, the value expected under the
hypothesis of independence or homogeneity, and the cell contribution to the
overall chi-square are displayed.  In this example, the hypothesis of
independence is appropriate.  If either the row or the column totals had been
predetermined before the sample was taken, the hypothesis of homogeneity
would have been appropriate.  The calculations are the same for either
hypothesis.

3In our example, the large differences between the expected values and the
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CASE    RIGHT1    RIGHT2    RIGHT3    RIGHT4

   1      1520       234       117        36

   2       266      1512       362        82

   3       124       432      1772       179

   4        66        78       205       492

observed values indicate that the model of independence is not an
acceptable model for this data set (p-value = 0.0000).  This seems quite
reasonable; one might reasonably expect the vision score for one eye to
have a positive association with that for the other eye.

It’s more convenient in some situations to store the column categories as
separate variables.  For example, the data listed on the preceding page can
rearranged using the Table format.  

The variables RIGHT1, RIGHT2, RIGHT3, and RIGHT4 contain the data
for columns 1 through 4 of the table (right eye scores 1 through 4).  Each
variable has four cases, and the order of the cases represent rows 1 through
4 of the table (left eye scores 1 through 4).  The analysis for these data is
specified by moving the four variables to the Table Variables box.

The most common problem in applying the chi-square test is that it becomes
unreliable when numerous expected cell values are near zero.  Snedecor and
Cochran (1980, p. 77) give the following general rules: 

1) No expected values should be less than one.
2) Two expected values may be close to one if most of the other

expected values exceed five.
3) Classes with expectations less than one should be combined to meet

1) and 2).

If your contingency table is a two by two table (two categories in both the
rows and columns), use the Two by Two Tables procedure (page 291).

Computation-

al Notes

You should consult Snedecor and Cochran (sec. 10.11) for more detail on
this test.  We don’t use the correction for continuity; we believe that the
arguments given by Fienberg (1980) for not using the correction are
compelling.
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Kolmogorov-Smirnov Test

Specification

The Kolmogorov-Smirnov Test procedure examines whether two samples
have the same distribution.  You must order the categories within the
samples.  The test, which is also known as the Smirnov test, is sensitive to
any differences between the distributions, including differences in means
and variances.  It’s generally preferable to a chi-square test because it
exploits the information in the ordering of the categories.

The sample counts for one distribution are in one variable, and the counts
for the other distribution are in a second variable.  It’s assumed that the
ordering of the cases in the two variables reflects the ordering of the
categories.  

Select the names of the two variables containing the samples.  The order of
the variables isn’t important, except that the signs of the resulting one-tailed
statistics are reversed.

Data

Restrictions

Example

The data must be nonnegative whole numbers and can’t exceed 99,999. 
There must be at least five cases.

The data for our example are fabricated.  Suppose you want to examine
whether students’ test scores are the same under two teaching methods.  The
variables METHOD1 and METHOD2 represent the number of students
receiving a particular grade.  There are 20 questions on the test, so there are
20 categories corresponding to the total number of possible scores.  The
data are listed in the table on the next page.
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Two Sample Kolmogorov-Smirnov (Smirnov) Test

 1.0 |                                       ------------------===
     |                                    ---            ======
     |                                     +          ===
     |                                 --- +    ======
     |                                     + ===
     |                              ---   ===
     |                                 ===
     |                           ======
     |                     ======
     |                  ===
     |               === -    ---
     |         ======    -
     |      ===          - ---
     |======            ---
 0.0 |------------------
     +------------------------------------------------------------
        --- METHOD1            === METHOD2

Sample size for METHOD1                      146
Sample size for METHOD2                      126

Hypothesis : METHOD1 <> METHOD2
Two-tailed Kolmogorov-Smirnov Statistic     0.29
P-Value (Smirnov's Chi-Square Approx.)    0.0000

Hypothesis : METHOD1 < METHOD2
One-tailed Kolmogorov-Smirnov Statistic    -0.29
P-Value (Smirnov's Chi-Square Approx.)    0.0000

Hypothesis : METHOD1 > METHOD2
One-tailed Kolmogorov-Smirnov Statistic     0.27
P-Value (Smirnov's Chi-Square Approx.)    0.0001

CASE   METHOD1   METHOD2

   1         1         7

   2         0         5

   3         0         7

   4         1         5

   5         1         6

   6         0         8

   7         6         6

   8        12         7

   9        18         7

  10        30         4

  11        24         5

  12        20         7

  13        21         8

  14         8         9

  15         2         5

  16         1         5

  17         0         6

  18         0         7

  19         0         5

  20         1         7

The analysis is specified on the preceding page.  The results are as follows:

The graph at the top of the replort displays the sample cumulative
distribution functions.  The Kolmogorov-Smirnov two-sample test is based
on the maximum difference between the cumulative distribution functions. 
The location of the greatest negative difference between the two curves is
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shown by the column of “-”s.  The greatest positive difference is located at
the column of “+”s.  The two-tailed test, which tests the hypothesis that the
two curves are different, is based on the difference with the greatest
absolute value, 0.29 in the example. The very small p-value indicates that
the distributions are indeed different.  One-tailed tests are also computed to
test (1) whether the largest positive difference is greater than expected by
chance if the two distributions are identical, and (2) whether the smallest
negative difference is smaller than expected.  Note that in this example both
one-tailed tests are significant.  The p-values are based on Smirnov’s (1939)
approximation using the chi-square distribution.  P-values are computed
only if the sum of the observations in the variables both exceed 15.

See Lehmann (1975) and Hollander and Wolfe (1973) for more detail.

McNemar’s Symmetry Test

The McNemar’s Symmetry Test procedure tests whether a square contin-
gency table is symmetric about the diagonal running from the upper left to
the lower right.  It is actually a generalized version of McNemar’s test
developed by Bowker (1948).

Specification The analysis can be specified in two ways, depending on how you choose to
enter the data.  If you enter the data in columns using two categorical
variables to identify the rows and columns, select the Categorical method
and identify the two classifying variables and, optionally, a dependent
variable containing counts.  You can also enter the data in as a two-
dimensional table, with variables identifying the columns and cases
identifying the rows.  This is called the Table method.

Select either the Categorical or the Table method that fits the way your data
have been entered.  Using the Categorical method, select the classifying
variable that identifies the rows of the contingency table and move it to the
Row Variable box.  Select the variable that identifies the columns and move
it to the Column Variable box.  If each case represents one observation,
don’t select a Counts Variable.  If the data are summarized, select the
variable that contains the counts for each case.
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CASE    RIGHT1    RIGHT2    RIGHT3    RIGHT4

   1      1520       234       117        36

   2       266      1512       362        82

   3       124       432      1772       179

   4        66        78       205       492

Using the Table method, select the variables that will represent the columns
of the contingency table and move them to the Table Variables box.

Data

Restrictions

The contingency table must be square, i.e., the number of rows and columns
must be equal.  No more than 500 row and column categories are allowed. 
Missing values aren’t permitted.  The count data should be nonnegative
integer values.

Example We use the data from Table 8.2-1 in Bishop, Fienberg, and Holland (1975)
for our example.  The data are the results of vision tests for 7,477 women. 
The variables LEFT and RIGHT are the scores for the left and right eyes,
respectively.  Each eye was assigned a score 1, 2, 3, or 4.  The data were
entered in the Table format (see the Chi-Square Test on page 282 for an
example of the Categorical method). 

The analysis of the vision test data is specified on the preceding page.  The
results are presented below.
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McNemar's Symmetry Test

                                     Variable

Case               RIGHT1      RIGHT2      RIGHT3      RIGHT4  

                +-----------+-----------+-----------+-----------+
1      Observed |  1520     |   234     |   117     |    36     |   1907
       Expected |  1520.00  |   250.00  |   120.50  |    51.00  |
    Cell Chi-Sq |     0.00  |     1.02  |     0.10  |     4.41  |
                +-----------+-----------+-----------+-----------+
2      Observed |   266     |  1512     |   362     |    82     |   2222
       Expected |   250.00  |  1512.00  |   397.00  |    80.00  |
    Cell Chi-Sq |     1.02  |     0.00  |     3.09  |     0.05  |
                +-----------+-----------+-----------+-----------+
3      Observed |   124     |   432     |  1772     |   179     |   2507
       Expected |   120.50  |   397.00  |  1772.00  |   192.00  |
    Cell Chi-Sq |     0.10  |     3.09  |     0.00  |     0.88  |
                +-----------+-----------+-----------+-----------+
4      Observed |    66     |    78     |   205     |   492     |    841
       Expected |    51.00  |    80.00  |   192.00  |   492.00  |
    Cell Chi-Sq |     4.41  |     0.05  |     0.88  |     0.00  |
                +-----------+-----------+-----------+-----------+
                   1976        2256        2456         789         7477

Overall Chi-Square    19.11
P-Value              0.0040
Degrees of Freedom        6

In each cell, the original observation, the value expected under the
hypothesis of symmetry, and the cell contribution to the overall chi-square
are displayed. Clearly, this model fits the data better than the model of
independence examined in Chi-Square Test, but there’s still a significant
lack of fit (p-value = 0.0040).  By examining the cell chi-squares, you’ll see
that the left and right pairs on the diagonal running from the lower left to
the upper right are primarily responsible for the lack of symmetry.

The most common problem in the application of McNemar’s test is that it
becomes unreliable when numerous expected cell values are near zero. The
guidelines usually given for the chi-square test for independence and
homogeneity are also applicable to McNemar’s test.  Snedecor and Cochran
(1980, p. 77) give the following general rules: 

1) No expected values should be less than one.
2) Two expected values may be close to one if most of the other

expected values exceed five.
3) Classes with expectations less than one should be combined to meet

1) and 2).

Computation-

al Notes

Consult Bishop, Fienberg, and Holland (1975) for more detail on this test
and example.
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                     Increase the space research budget?

                                Yes         No

                           

                       Yes       11          3

   Increase the            

   defense budget?         

                       No         6         10

Two By Two Tables

Specification

The Two By Two Tables procedure computes several measures and tests of
association for two by two contingency tables.

When the two by two tables procedure is selected, an empty two by two
table is displayed, with the cursor positioned in the upper left cell:

Simply enter the number you want in each of the four cells, pressing Tab to
move forward to the next cell.  Press the OK button to compute the analysis. 

Data

Restrictions

Example

The cell values must be nonnegative integers.  All row and column totals
must be greater than zero.  The individual cell values can’t exceed 99,999.

Suppose 30 people are selected at random and asked two questions.  The
first question is whether they favor increasing the budget for space research,
and the second is whether they favor increasing the defense budget. The
responses are as follows:

The goal of the analysis is to examine whether the responses to the two
questions are related.  That is, if a person favors increasing space research,
would he or she also favor increased defense spending?  The results of the
analysis are shown on the next page.
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                               Two by Two Tables

                            +----------+----------+
                            |          |          |
                            |    11    |     3    |    14
                            |          |          |
                            +----------+----------+
                            |          |          |
                            |     6    |    10    |    16
                            |          |          |
                            +----------+----------+
                                 17         13         30

Fisher Exact Tests:  Lower Tail 0.0279   Upper Tail 0.0051   Two Tailed 0.0329

Pearson's Chi-Square          5.13          Yule's Q              0.72
  P (Pearson's)             0.0235            SE (Q)            0.2009
Yates' Corrected Chi-Sq       3.59            SE (H0: Q = 0)    0.3693
  P (Yates)                 0.0580          Yule's Y              0.42
Log Odds Ratio              1.8101            SE (Y)            0.1704
  SE (LOR)                  0.8312            SE (H0: Y = 0)    0.1846
  SE (H0: LOR = 0)          0.7385          C Max                 0.63
Odds Ratio                  6.1111          Phi                   0.41
  Lower 95% CI for OR       1.1983          Phi Max               0.82
  Upper 95% CI for OR       31.164          Contingency Coeff     0.38

Descriptions of most of these measures can be found in Bishop et al. (1975)
and the BMDP-83 manual.  Notice that where standard errors are reported
for a measure, two types of standard errors are given—unrestricted and
restricted.  The restricted standard error is appropriate for constructing
hypothesis tests that the measure equals zero.  The unrestricted measure is
appropriate for constructing confidence intervals around the measure if the
hypothesis that the measure equals zero is rejected.  Brown and Benedetti
(1977) should be consulted for more detail.  Large sample theory can be
used to test whether a measure differs from zero.  If the samples are “large
enough”, the measures should be nearly normally distributed.  Under the
null hypothesis, a measure divided by its restricted standard error should
have a Z, or standard normal distribution.  For example, to test whether the
log odds ratio is different from zero, we compute Z = 1.8101 / 0.7385 =
2.451.  When we calculate the p-value for Z = 2.451 with the Z2TAIL
procedure (see Chapter 13 Probability Functions), we find that p = 0.014,
suggesting that the log likelihood ratio is different from zero.  Approximate
95% confidence intervals around the log odds ratio would be constructed as
1.8101 ± 1.96 ( 0.8312 using the unrestricted standard error.

The results of this analysis suggest that there is, in fact, a relationship
between the responses to the two questions.

Fisher’s exact test is displayed for total sample sizes of 500 or less.  The
other statistics are only displayed for total sample sizes of 26 or greater.
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Computation-

al Notes

The procedure for determining the upper- and lower-tail probabilities for
Fisher’s exact test is described in Bradley (1968).  Woolf’s method is used
to compute the confidence intervals for the odds ratio and is described in
Lee (1992, p. 286).

Log-Linear Models

Specification

The Log-Linear Models procedure fits a hierarchical log-linear model to
the data in a multidimensional contingency table and computes several
goodness-of-fit statistics.  You can also save the expected values and
residuals.

The analysis requires a variable which contains the discrete count data. 
Move the variable name containing this data to the Dependent Variable
box. You can specify starting values for the estimated cell counts by moving
the name of the variable that contains the starting values to the Starting
Values box.  This isn’t necessary normally.  Starting values are discussed in
detail on page 297.
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Log-linear model configurations are specified in a manner quite similar to
the traditional approach of Bishop, Fienberg, and Holland (1975) and
Fienberg (1980).  Some examples are given below.  The variables X1,
X2, …, and XN represent the categorical variables by which the data in the
dependent variable are cross-classified.  The Xi’s should be integers;
decimal values are truncated.   (Hint:  the CAT function in Transforma-
tions is often very useful for generating the classifying variables.)

Example 1: Two-way table. Model for complete independence.

  X1 X2

Example 2: Three-way table.  Conditional independence of X1 and X2
given X3. 

  X1(X3 X2(X3

Example 3: Four-way table.  Model includes a three-way interaction.

  X1 X2(X3(X4

Variables within the same interaction term are separated by “(”. 
Interaction terms are set off from other interaction terms by spaces.  The
order in which the terms are specified in the model doesn’t matter, and
neither does the order of variables within the interaction terms.

Log-Linear Models is based on a procedure called iterative proportional
fitting (IPF), which is described in the references mentioned above.  Three
aspects of the IPF procedure can be controlled by the user: (1) starting
values for the estimated expected values, (2) maximum number of
iterations, and (3) estimated expected value convergence criterion, or
tolerance.  You should specify these only if you’re certain the defaults are
unacceptable.  The defaults are appropriate for the majority of applications. 
The details of changing the defaults follow.

The starting values for the estimated expected values default to 1.0 unless
they’re specified otherwise.  This is appropriate for most log-linear analyses
(but see Specifying Starting Values on page 297).  To override the default, a
variable containing the starting values must be supplied.  These initial
values don’t need to be integers.

The IPF algorithm continues until one of two termination criteria is
satisfied.  These criteria are (1) the number of iterations and (2) the
maximum absolute difference in the cell estimates from one iteration to the
next, which is called the tolerance.  The default value for the tolerance is
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0.01;  if none of the absolute differences in the estimated expected cell
counts from one iteration to the next exceeds the tolerance value,
satisfactory convergence is assumed to have occurred.  If the maximum
allowable number of iterations is reached, it’s assumed that the procedure
didn’t converge satisfactorily and no results will be given.  The default for
the maximum allowable number of iterations is 25.

Decreasing the size of the tolerance often  increases the required number of
iterations.  The default tolerance value will usually be satisfactory.

Data

Restrictions

Example

The maximum number of classifying variables that are allowed in one
model is seven.  Within each classifying variable, the maximum number of
classes permitted is 500.  The combinations of cross-classifications must be
unique and exhaustive.  For example, suppose the model is Y = X1 X2 and
that X1 has four classes (1, 2, 3, 4) associated with it and X2 has three
classes (1, 2, 3) associated with it.  This requires a total of 12 cases; the
only pairs of classes for X1, X2 that may appear are 1,1; 1,2; 1,3; 2,1; 2,2;
2,3; 3,1; 3,2; 3,3; 4,1; 4,2; and 4,3.  If all possible cross-classifications are
not present or if some are duplicated, an error message is given.  No missing
values are allowed in the cell data.

The data in the multidimensional contingency table may have been
generated by either a Poisson, multinomial, or product multinomial
sampling scheme.  Consult Bishop et al. (1975) for more detail.  It’s
assumed that the model to be fitted is hierarchical; all lower-order
interactions that are subsets within the specified configurations are always
included in the model.

The example is from Table 3-2 of Fienberg (1980).  The variable COUNTS
contains the counts for two species of tree-dwelling lizards.  The object of
the analysis is to examine how the height of a perch, the diameter of a
perch, and the species of lizard influence perch selection.  The categorical
variable SPECIES indicates which species a count is for.  (SPECIES = 1
and SPECIES = 2 for the two species, respectively.)  There are two perch-
diameter classes recorded in the variable DIAMETER.  Likewise, there are
two perch-height classes in HEIGHT.  A variety of models could be fitted to
this data.  Refer to Bishop et al. (1975) and Fienberg (1980) for strategies
for finding the “best” models.

The results for a model of conditional independence are shown.  That is,
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Log-linear Model Analysis on COUNTS  

Configuration 1  SPECIES*HEIGHT
Configuration 2  SPECIES*DIAMETER

Goodness-of-fit Summary Statistics

Statistic        Chi-Sq     DF         P  

Pearson            6.11      2    0.0471
Likelihood         4.88      2    0.0871
Freeman-Tukey      3.99      2    0.1360

Number of Near Zero Expected Cells     0
Number of Iterations Performed         2
Termination Criterion Difference    0.10

suppose it’s hypothesized that, given the species of a lizard, the diameter of
the perch it selects is independent of the height of the perch.  The model is
specified in the dialog box on page 293.  The results are displayed below.

The Pearson, likelihood ratio, and Freeman-Tukey goodness-of-fit statistics
are discussed in Bishop et al. (1975).  In this example, it’s difficult to
decide whether the model of conditional independence fits the data; the
Pearson chi-square would lead to the rejection of this model at the 5%
significance level, while the other two goodness-of-fit statistics would not. 
In an actual analysis, it’s often desirable to look at the results for all feasible
models. 

The degrees of freedom are computed as the total number of cells in the
multidimensional table minus the number of independent parameters that
were estimated.  This is appropriate for a “complete” table that has no zero
marginals. (See Bishop et al. for the definition of complete tables.) 
Incomplete tables or zero marginals will require special treatment.  The
number of near zero cell estimates are displayed to indicate when the
degrees of freedom need to be adjusted.

Log-Linear

Results Menu

Once you’ve specified the analysis and obtained the results, a Results menu
appears on the menu at the top of the main Statistix window.  After you’ve
viewed the log-linear results, click on the Results menu to access the log-
linear results menu.
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Select Coefficient Table to redisplay the log-linear results table.  Select
Options to return the log-linear dialog box used to specify the model.  The
Save Residuals option is discussed below.

Save Residuals The Save Residuals command is used to save residuals and expected values
as new variables.  You can save standardized, maximum likelihood,
Freeman-Tukey, or raw residuals.  You save residuals by entering variable
names in the dialog box below.

Enter a new or existing variable name in the field next to the residual or
expected value you want to save.  You can press the down-arrow button
next to a box to display the list of existing variables.  You can select as
many options as you like.  When you’ve entered all the names you want,
press the OK button.

Residuals are useful for diagnosing why a model doesn’t fit the data well,
which in turn may suggest models that will fit well.  When the model is
correct, the Freeman-Tukey and standardized residuals are approximately
normally distributed with a mean of zero and a variance slightly less than
one.

Specifying

Starting Values

Occasionally, it’s useful to specify starting values for the estimated cell
counts.  One such circumstance is when the cell counts follow a Poisson
distribution and the counts have been taken from different reference
populations.  Haberman (1978) and Heisey (1985) give some examples of
such analyses; the starting values will often be non-integer values.  

Heisey (1985) gives an example where the goal is to examine factors
affecting the preferences shown by white-tailed deer for different habitat
types.  Frequent use of a habitat may result from a preference for that
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habitat or from that habitat just being common, so it’s desirable to adjust for
the areas of habitats available to the animals.  In Heisey’s study, the
categorical variable indicating the habitat type was called HABITAT and
the areas of the different habitats in the study area were called AREA.  The
categorical variables (“factors”) were DEER and TIME—the animal under
observation and the time of day, respectively.  The number of times a deer
was found in a particular habitat was USE.  The best model was found to
be:

The main point of interest is that AREA was adjusted for by using it as the
starting values for the estimated expected cell frequencies.  Consult Heisey
(1985) for more detail.

Another situation where the user will want to specify initial values is for
models of quasi-independence; the starting values will be either zero or one
(Fienberg 1980).  Quasi-independence is often of interest for tables that by
definition must include empty cells, or so-called structural zeros. 
Incomplete tables are handled in a similar way; missing cells are given a
starting value of zero.  A note is given in the results when initial values are
specified.

Computation-

al Notes

Iterative proportional fitting is used to estimate the expected cell
frequencies.  The program was generally patterned after Haberman (1972).

298 Statistix User's Manual



Spearman Rank Correlations

Specification

The Spearman Rank Correlations procedure computes the Spearman rank
correlation coefficient matrix for a list of variables.  Typical significance
tests for simple correlations usually require that the samples follow a
bivariate normal distribution.  This is often a difficult assumption to justify,
especially for ordinal data, i.e., ranks.  Spearman rank correlations are
suitable for examining the degree of association when the samples violate
the assumption of bivariate normality. 

Select the variables for which you want to compute rank correlations. 
Highlight the variables you want to select in the Variables list box, then
press the right-arrow button to move them to the Correlation Variables  list
box.  To highlight all variables, click on the first variable in the list, and
while holding the mouse button down, drag the cursor to the last variable in
the list.  Check the Compute P-Values check box to have p-values for the
correlation coefficients computed and reported.

Data

Restrictions

Example

Up to 50 variables can be specified.  If a case in your data has missing
values for any variable, the entire case is deleted (listwise deletion). 

We use the data of Hald (1952) used in Draper and Smith (1981) for our
example.  This data set is also used for the example for the Correlations
procedure in Chapter 6.  The variable HEAT is the cumulative heat of
hardening for cement after 180 days.  The variables CHEM1, CHEM2,
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CASE     HEAT    CHEM1    CHEM2    CHEM3    CHEM4

   1     78.5        7       26        6       60

   2     74.3        1       29       15       52

   3    104.3       11       56        8       20

   4     87.6       11       31        8       47

   5     95.9        7       52        6       33

   6    109.2       11       55        9       22

   7    102.7        3       71       17        6

   8     72.5        1       31       22       44

   9     93.1        2       54       18       22

  10    115.9       21       47        4       26

  11     83.8        1       40       23       34

  12    113.3       11       66        9       12

  13    109.4       10       68        8       12

Spearman Rank Correlations, Corrected for Ties

            CHEM1     CHEM2     CHEM3     CHEM4

CHEM2      0.3301
CHEM3     -0.7186    0.0527
CHEM4     -0.3320   -0.9903   -0.0806
HEAT       0.7912    0.7373   -0.4488   -0.7521

Maximum Difference Allowed Between Ties  0.00001

Cases Included 13    Missing Cases 0

CHEM3, and CHEM4 are the percentages of four chemical compounds
measured in batches of cement.  The data are listed below, and are stored in
the file Sample Data\Hald.sx.

The analysis is specified on the preceding page.  The results are as follows:

The Spearman correlation coefficient is the usual (Pearson product moment)
correlation coefficient computed from the rank scores of the data rather than
the original data.  If ties are found when the data are ranked, the average
rank is assigned to the tied values, as suggested by Hollander and Wolfe
(1973).  Values are considered to be tied if they are within 0.00001 of one
another.  A message “corrected for ties” is displayed in the first line of the
report when ties are found.

A similar nonparametric correlation coefficient is Kendall’s tau.  In most
cases, inference based on Kendall’s tau will produce results nearly identical
to that based on Spearman’s rho (Conover 1980).

Computation-

al Notes

The ranks are first computed for the data.  The correlations are then
computed with the same procedures used to produce the Pearson
correlations.  See Correlations (Pearson) in Chapter 6 for more detail.
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9

Randomness/Normality Tests

Statistix offers three procedures for testing data for randomness and
normality.

The Runs Test is useful for examining whether samples have been drawn at
random from a single population.  It can detect patterns that often result
from autocorrelation.  

The Shapiro-Wilk Test calculates the Shapiro-Wilk statistic with p-value
used to test whether data conform to a normal distribution.  

The Normal Probability Plot produces a rankit plot, also useful for
examining whether data conform to a normal distribution.
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Runs Test

Specification

The Runs Test procedure examines whether the number of runs found in a
variable are consistent with the hypothesis that the samples are order-
independent.  A run is defined as consecutive samples that are either
consistently above or below the sample median (mean).  Autocorrelation
often results in more or fewer runs than if the samples are independent.  

Select the names of the variables that you want to test for runs.  A separate
runs test is performed for each variable you move to the Runs Test
Variables list box.

Choose either the median or the mean for the Cutoff Point.  Using the mean
can work better than the median when the data contain only a few discrete
values that would result with a large number of ties with the median.

Example We’ll apply the runs test to residuals resulting from a linear regression
analysis.  The data—the Hald data from Draper and Smith (1981)—are used
for the example data set in Linear Regression.  Standardized residuals
were computed for the regression model HEAT = CHEM1 CHEM4 and
stored in the variable STDRES.  The runs test is specified by selecting the
variable name as shown on the preceding page.  The results are presented on
the next page.
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Runs Test for STDRES  

Median                       0.0553
Values Above the Median           6
Values below the Median           6
Values Tied with the Median       1
Runs Above the Median             4
Runs Below the Median             4
Total Number of Runs              8
Expected Number of Runs         7.0

P-Value, Two-Tailed Test                 0.7835
Probability of getting 8 or fewer runs   0.8247
Probability of getting 8 or more runs    0.3918

A value was counted as a tie with the Median if it was within 0.00001

Cases Included 13    Missing Cases 0

In residual analysis, you’re more likely to see too few runs rather than too
many.  Too few runs result from runs generally being too long, which
indicates positive autocorrelation.  When observed in residuals, this could
be because you didn’t include important explanatory variables in the model. 
The one-tailed p-value of 0.8247 indicates that there is no evidence for too
few runs in these residuals.  

Too many short runs is less common, and results from negative autocorrela-
tion.  An example where negative autocorrelation can be expected is in a
situation where a process is being constantly monitored and adjusted, and
there’s a tendency toward overcompensation when adjustments are made. 
The probability of getting eight or more runs in our example is 0.3918,
which again is no cause for alarm.

The Durbin-Watson statistic in Linear Regression is also very important
for diagnosing autocorrelation in regression residuals.

Computation-

al Notes

The equations used to calculate the runs probabilities can be found in
Bradley (1968, p. 254).  These exact equations are used unless the number
of values above or below the median exceeds 20, in which case normal
approximations are used (p. 262).
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Shapiro-Wilk Normality Test

Variable        N         W         P

STDRES         13    0.9668    0.8541

Shapiro-Wilk Normality Test

The Shapiro-Wilk Test examines whether data conforms to a normal
distribution.  The W statistic and corresponding p-values are calculated.

Specification

Select the variables you want to test and move them to the Test Variables
box. 

Example We’ll apply the Shapiro-Wilk test to residuals resulting from a linear
regression analysis.  The data—the Hald data from Draper and Smith
(1981)—are used for the example data in Linear Regression.  Standardized
residuals were computed for the regression model HEAT = CHEM1
CHEM4 and stored in the variable STDRES.  If the assumptions of linear
regression are met, the standardized residuals should be approximately
normally distributed with mean 0 and variance 1. The variable STDRES is
selected for the Shapiro-Wilk test in the dialog box above.  The results are
presented below.

The W statistic approaches one for normally distributed data.  We reject the
null hypothesis that the data are normally distributed when the p-value is
small (e.g., smaller than 0.05).  We conclude from the p-value of 0.8541 for
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the variable STDRES that the residuals are normal and that this assumption
for linear regression has been satisfied.

Computation-

al Notes

Algorithms used for the W statistic and the p-value are given in Royston
(1995).

Normal Probability Plot

The normal probability plot, also called a rankit plot, plots the ordered data
points against the corresponding rankits.  When the data plotted are drawn
from a normal population, the points appear to fall on a straight line.  The
Shapiro-Wilk W statistic is also reported on the plot.

Specification

Select the name of the variable you want to plot and move it to the Plot
Variable box.

Example We’ll apply the Normal Probability Plot procedure to residuals resulting
from a linear regression analysis.  The data—the Hald data from Draper and
Smith (1981)—are used for the example data in Linear Regression. 
Standardized residuals were computed for the regression model HEAT =
CHEM1 CHEM4 and stored in the variable STDRES.  The variable
STDRES is selected as the plot variable in the dialog box above.  The
results are presented no the next page.
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If the assumptions of linear regression are met, the standardized residuals
should be approximately normally distributed with mean 0 and variance 1. 
The i-th rankit is defined as the expected value of the i-th order statistic for
the sample, assuming the sample was from a normal distribution.  The order
statistics of a sample are the sample values reordered by their rank.  If the
sample conforms to a normal distribution, a plot of the rankits against the
order statistics should result in a straight line, except for random variation.

Systematic departure of the normal probability plot from a linear trend
indicates non-normality, as does a small value for the Shapiro-Wilk W
statistic (see page 304).  The example plot above shows no evidence of non-
normality.  One or a few points departing from the linear trend near the
extremes of the plot are indicative of outliers.  Consult Daniel and Wood
(1971), Daniel (1976), and Weisberg (1985) for more detail.

Computation-

al Notes

Rankits are computed with an algorithm similar to Royston’s (1982)
NSCOR2.  The procedure for calculating the required percentage points of
the normal distribution and the Shapiro-Wilk W statistic uses the algorithms
provided by Royston (1995).
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Time Series

A time series is a list of observations collected sequentially, usually over
time.  Common time series subjects are stock prices, population levels,
product sales, rainfall, and temperature.  It’s assumed that the observations
are taken at uniform time intervals, such as every day, month, or year.  Not
all time series occur over time.  For example, a list of diameters taken at
every meter along a telephone cable is a legitimate time series.

Observations in a time series are often sequentially dependent.  For
example, population levels in the future often depend on levels at present
and in the past.  The goal of time series analysis is to model the nature of
these dependencies, which in turn allows you to predict, or forecast,
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observations that have not yet been made.

The Time Series Plot procedure is used to create a time series plot for one
or more variables.

The Autocorrelation Plot procedure is used to create an autocorrelation
plot for a specified variable.

The Partial Autocorrelation Plot procedure is used to create a partial
autocorrelation plot for a specified variable.

The Cross Correlation procedure is used to create a cross correlation plot
for two variables.

The Moving Averages procedure is used to compute forecasts for time
series data based on moving averages.

The Exponential Smoothing procedure computes forecasts for time series
data using exponentially weighted averages.

The SARIMA procedure allows you to fit a variety of models to data,
including both nonseasonal and multiplicative, and nonmultiplicative
seasonal models.

Model

Building

The methods described by Box and Jenkins (1976) is a popular tool for
modeling time series.  The Box-Jenkins approach assumes that the time
series can be represented as an ARIMA process, which stands for
AutoRegressive Integrated Moving Average.

Box and Jenkins advocate an iterative three-step approach to model
building: 

1) Identification of terms to be included in the model
2) Parameter estimation
3) Model evaluation

Model term identification relies on the use of Time Series Plots, Autocorre-
lation Plots, and Partial Autocorrelation Plots.  These plots are examined to
suggest what transformations, differencing operators, AR terms, and MA
terms should be included in the model.  

Once a tentative model has been identified, parameter estimation is accom-
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plished with the SARIMA procedure, which uses the unconditional least
squares method (sometimes called the backcasting method) to fit the identi-
fied model to the series.  

Model evaluation is accomplished by examining the results of the SARIMA
fitting.  If the model isn’t adequate, a new tentative model is identified and
the process repeated until a good model is found.  A good model can then
be used to forecast future observations.  Box and Jenkins (1976) should be
consulted for more details.

The forecasting procedures Exponential Smoothing and Moving Averages
are easier to use and understand than ARIMA models.

Treatment of

Missing or

Omitted

Cases

Time series data sets can’t have embedded missing values or omitted cases. 
There can be blocks of missing or omitted cases at the beginning and end of
the data set.  Statistix time series procedures use the first continuous block
of data that doesn’t contain missing values or omitted cases for the series.
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Time Series Plot

Specification

The Time Series Plot procedure is used to create a time series plot for one
or more variables.  The values of the variables are plotted in case order.

Select the names of one or more time series variables.  If you select more
than one name, all the variables will be plotted on a single time series plot
using different colors, line patterns, and point symbols.

Normally, the points along the X axis are labeled as case numbers starting
with 1.  You can customize the X axis labels specifying an X Axis Label
Var containing the labels.  The label variable can be a string, date, integer,
or real variable.  Strings are truncated to ten characters.

Additional options are available to control the appearance and labeling of
the plot.  Points on a time series plot are usually connected by line
segments.  You control this using the Connect Points check box.  Use the
Mark Points radio buttons to have the individual points marked with a
circle, a digit, or no mark at all. 

Use the Origin option to change the starting case number for the X axis
labels.  For example, if you have annual data starting with 1955, enter 1955
in the Origin edit control to have the axis labeled 1955, 1956, and 1957
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instead of 1, 2, and 3.

Numbering the points using digits is useful for identifying seasonal trends. 
You should enter a value for Period that reflects the frequency of data
collection.  For example, enter 4 for quarterly data or a 12 for monthly data. 
A seasonal trend stands out clearly when the same digit appears in either
peaks or valleys.

The Period also affects how often the X axis is labeled.  The example dialog
box on the preceding page specifies a period of 12, which is suitable for
labeling monthly data.  The X axis will be labeled every 12 cases.

You can enter values for low, high, and step to control the Y-Axis scale.

Example The example data are the natural logs of monthly passenger totals (in
thousands) in international air travel for 12 years from January 1949 to Dec-
ember 1960 (Box and Jenkins 1976, p. 304).  You can view the data by
opening Sample Data\airline.sx.  A total of 144 cases are in the variable
named Z.  The variable YEAR was created to annotate the X axis of our
example plot—the year was entered for every 12th case.  The dialog box on
the preceding page is used to obtain the time series plot below.
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Autocorrelation

Specification

The Autocorrelation Plot procedure is used to create an autocorrelation
plot for the specified variable.  Approximate 95% confidence intervals are
also shown.

Select the name of a time series variable and move it to the Times Series
Variable box.  You can specify a lag in the Lag edit control.  If you don’t
specify a lag, the maximum lag is used, which is calculated as the square
root of the sample size plus five.

Example We use the data from Box and Jenkins (1976, p. 304) for our example (see
the sample file Sample Data\airline.sx).  The data are the natural logs of
monthly passenger totals (in thousands) in international air travel for 12
years from January 1949 to December 1960.  A total of 144 cases are in a
variable named Z.  The variable W is created by first seasonally
differencing Z and then nonseasonally differencing the seasonal difference. 
Using Transformations from the Data menu, W is created in two steps by:

  W = Z - LAG (Z, 12)

  W = W - LAG (W)

That is, W = DD Z, where D is the differencing operator.12

The dialog box above shows the entries for the differenced airline data.  A
specific lag is not specified, so the maximum lag is used.  The results are
presented in the autocorrelation plot on the next page.
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Autocorrelation Plot for W  

            -1.0 -0.8 -0.6 -0.4 -0.2  0.0  0.2  0.4  0.6  0.8  1.0

 Lag    Corr  +----+----+----+----+----+----+----+----+----+----+

   1  -0.341                  *****<****   <                     
   2   0.105                      >    **** <                    
   3  -0.201                      <*****    <                    
   4   0.020                      >    **   <                    
   5   0.056                      >    **   <                    
   6   0.031                      >    **   <                    
   7  -0.056                      >   **    <                    
   8   0.001                      >    *    <                    
   9   0.174                      >    *****<                    
  10  -0.076                      >  ***    <                    
  11   0.064                      >    ***  <                    
  12  -0.387                 *****<*****    <                    
  13   0.154                     >     ***** <                   
  14  -0.060                     >    **     <                   
  15   0.151                     >     ***** <                   
  16  -0.139                     >  ****     <                   

Mean of the Series   2.824E-04
Std Dev of Series      0.04565
Number of Cases            131

The first column indicates the lag for which the autocorrelation is
computed.  The next column displays the value of the autocorrelation.  The
autocorrelation is displayed graphically as a horizontal bar.  Approximate
95% confidence bounds are indicated with angled brackets (< >).  The
direction in which the confidence bounds point indicates where the observa-
tion lies relative to the confidence bound.  For example, with a lag of 3, the
autocorrelation is -0.201, which lies outside of the confidence bound to the
left.

The confidence intervals for the lag p are based on the assumption that
autocorrelations for lags p and greater are zero.

Computation-

al Notes

Computations follow those outlined in Box and Jenkins (1976).
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Partial Autocorrelation

Specification

The Partial Autocorrelation Plot procedure is used to create a partial
autocorrelation plot for the specified variable.  Approximate 95%
confidence intervals are also displayed.

Select the name of a Time Series Variable.  You may specify a Lag.  If you
don’t, the maximum lag is used, calculated as the square root of the sample
size plus five.

Example We use the data from Box and Jenkins (1976, p. 304) for our example.   
You can view the data by opening Sample Data\airline.sx.  The data are the
natural logs of monthly passenger totals (in thousands) in international air
travel for 12 years from January 1949 to December 1960.  The dialog box
above shows the entries for the differenced airline data in the variable W
(page 312).  A specific lag isn’t specified, so the maximum lag is used.  The
resulting partial autocorrelation plot is shown on the next page.

The first column indicates the lag for which the partial autocorrelation is
computed.  The next column displays the value of the partial
autocorrelation.  The partial autocorrelation is displayed graphically as a
horizontal bar.  Approximate 95% confidence bounds are indicated with
angled brackets (< >).  The direction in which the confidence bounds point
indicates where the observation lies relative to the confidence bound.  

The confidence intervals for lag p are based on the assumption that the
series results from an autoregressive process of order p - 1.
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Partial Autocorrelation Plot for W  

            -1.0 -0.8 -0.6 -0.4 -0.2  0.0  0.2  0.4  0.6  0.8  1.0

 Lag    Corr  +----+----+----+----+----+----+----+----+----+----+

   1  -0.341                  *****<****   <                     
   2  -0.013                       >   *   <                     
   3  -0.191                      *<****   <                     
   4  -0.125                       >****   <                     
   5   0.034                       >   **  <                     
   6   0.036                       >   **  <                     
   7  -0.061                       > ***   <                     
   8  -0.019                       >   *   <                     
   9   0.224                       >   ****>**                   
  10   0.041                       >   **  <                     
  11   0.046                       >   **  <                     
  12  -0.341                  *****<****   <                     
  13  -0.107                       >****   <                     
  14  -0.077                       > ***   <                     
  15  -0.021                       >  **   <                     
  16  -0.138                       >****   <                     

Mean of the Series  2.824E-04
Std Dev of Series     0.04565
Number of Cases           131

Computation-

al Notes

Computations follow those outlined in Box and Jenkins (1976).

Cross Correlation

The Cross Correlation procedure is used to create a cross correlation plot
for two variables.

Specification

Select the names of the two Time Series Variables.  Unless a Lag is
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Cross Correlation Plot for EVENT1 and EVENT2

            -1.0 -0.8 -0.6 -0.4 -0.2  0.0  0.2  0.4  0.6  0.8  1.0

 Lag    Corr  +----+----+----+----+----+----+----+----+----+----+

 -10  -0.100                         ***                         
  -9  -0.014                           *                         
  -8  -0.008                           *                         
  -7  -0.032                          **                         
  -6  -0.073                         ***                         
  -5   0.013                           *                         
  -4   0.022                           **                        
  -3  -0.037                          **                         
  -2  -0.117                        ****                         
  -1  -0.119                        ****                         
   0   0.823                           **********************    
   1   0.375                           **********                
   2   0.177                           *****                     
   3  -0.157                       *****                         
   4  -0.060                          **                         
   5   0.032                           **                        
   6   0.201                           ******                    
   7  -0.053                          **                         
   8  -0.070                         ***                         
   9   0.003                           *                         
  10  -0.033                          **                         

Mean of Series 1         0.55584
Std. Dev. of Series 1    0.27460
Mean of Series 2         1.16506
Std Dev of Series 2      0.31157
Number of Cases              139

explicitly specified, the maximum absolute value of the lag is used,
computed as the square root of the sample size plus five.

Example To demonstrate cross correlation, we’ll fabricate some data.  The variable
EVENT1 is created simply as a list of uniform random numbers.  We then
create the variable EVENT2 as a moving average process of EVENT1. 
These two variables are generated in Transformations as:

  EVENT1 = RANDOM

  EVENT2 = EVENT1 + LAG (EVENT1) / 2 + LAG (EVENT1, 2) / 3 +
  LAG (EVENT1, 6) / 4

The dialog box displayed on the preceding page is used to find the cross
correlations for EVENT1 and EVENT2 for 10 lags.  The results are
presented below in the cross correlation plot.

Computation-

al Notes

Computations follow those outlined in Box and Jenkins (1976).

Moving Averages
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Specification

The Moving Averages procedure is used to compute forecasts for time
series data.  Both single and double moving averages techniques are
available.  Use single moving averages when there is no trend in the time
series data.  Use double moving averages when there is a trend in the data, 

Select the name of a Time Series Variable.  Then select single or double
moving averages using the Model radio buttons.

Enter a value for the number of periods in the moving average in the
Periods in an Average edit control.  In general you can select a value for
the period that minimizes the maximum absolute deviation (MAD) or the
mean squares of the forecast errors (MSE).  The number of periods in the
moving average is sometimes selected to remove seasonal effect; 4 is used
for quarterly data, 12 for monthly data, and so on.

When using double moving averages, you can also specify the number of
future periods for which you want to compute forecasts in the Periods to
Forecast box.

Data

Restrictions

There must be enough cases in the time series to compute the moving
averages.  The minimum number depends on the value you enter for the
length of the moving averages.  If the number of periods you specify for the
moving averages is n, there must be at least n + 1 cases for single moving
averages and 2 x n cases for double moving averages.

Example We illustrate single moving averages using earnings per share for Exxon for
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YEAR      EARNINGS           YEAR      EARNINGS

1962        1.94             1970        2.96

1963        2.37             1971        3.39

1964        2.44             1972        3.42

1965        2.41             1973        5.45

1966        2.53             1974        7.02

1967        2.77             1975        5.60

1968        2.97             1976        5.90

1969        2.89

Single Moving Averages for EARNINGS  

Moving Average Length  4

Sum of Squared Errors (SSE)         17.2542
Mean Squared Error (MSE)            1.56857
Standard Error (SE)                 1.25242
Mean Absolute Deviation (MAD)       0.82386
Mean Abs Percentage Error (MAPE)      16.84
Mean Percentage Error (MPE)           16.84
Number of Cases                          15

          95% C.I.                 95% C.I.

Lead    Lower Bound   Forecast   Upper Bound

   1       3.53775     5.99250      8.44725

the years 1962 to 1976.  The data are stored in Sample Data\Exxon.sx.

The dialog box on the preceding page shows the moving averages options
selected for the Exxon data.  The results are:

The results list a number of summary statistics that are useful for checking
the adequacy of the model.  The forecast for the year 1977 is displayed with
a 95% confidence interval.

Moving

Averages

Results Menu

Once you’ve specified and computed a moving average analysis, a Results
menu appears on the menu at the top of the Statistix window.  Click on
Results to access the pull-down menu displayed below.

Selecting Coefficient Table from the menu will redisplay the results
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Single Moving Averages Forecast Table for EARNINGS

         Actual      Moving                Forecast

Time      Value     Average    Forecast       Error

   1    1.94000
   2    2.37000
   3    2.44000
   4    2.41000     2.29000
   5    2.53000     2.43750     2.29000     0.24000
   6    2.77000     2.53750     2.43750     0.33250
   7    2.97000     2.67000     2.53750     0.43250
   8    2.89000     2.79000     2.67000     0.22000
   9    2.96000     2.89750     2.79000     0.17000
  10    3.39000     3.05250     2.89750     0.49250
  11    3.42000     3.16500     3.05250     0.36750
  12    5.45000     3.80500     3.16500     2.28500
  13    7.02000     4.82000     3.80500     3.21500
  14    5.60000     5.37250     4.82000     0.78000
  15    5.90000     5.99250     5.37250     0.52750

presented on the preceding page.  Selecting Options from the menu will
return you to the Moving Averages dialog box used to generate these
results.  Use the Plot option to produce a time series plot of the actual and
fitted data.  The remaining menu selections are discussed below.

Forecast Table The Forecast Table lists the actual value, moving average, forecast, and
forecast error for each time period in the data.  

Save Residuals Use the Save Residuals procedure to save the fitted values (forecasts)
and/or residuals (forecast errors) in new or existing variables for later
analysis.  Enter a variable name in the Fitted Values Variable box and/or
the Residuals Variable box.

Computation-

al Notes

Computations follow those described in Hanke and Reitsch (1989) and
Mercier (1987).
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Exponential Smoothing

Specification

The Exponential Smoothing procedure computes forecasts for time series
data using exponentially weighted averages.  Five different models are
available to fit no trend data, trend data, and trend with seasonal data.

First select the name of a Time Series Variable.  Press the down-arrow
button to display the list of variables in your data set.  

Next select the model you want to use from the Model radio buttons.  Single
exponential smoothing is used when the time series data doesn’t exhibit any
trend.  The smoothing constant Alpha determines how much past
observations influence the forecast.  A small smoothing constant results in a
slow response to new values; a large constant results in a fast response to
new values.  Values for the smoothing constant are normally selected in the
range 0.05 to 0.60.  For the best model, select a smoothing constant that
minimizes the mean squares of the forecast errors (MSE).

Brown’s 1-P linear model and Holt’s 2-P linear model are used when the
data exhibit trend.  Brown’s model uses one smoothing constant (Alpha) to
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Brown's 1-P Linear Exponential Smoothing for EARNINGS  

Smoothing Constant   0.10

Sum of Squared Errors (SSE)         9.47382
Mean Squared Error (MSE)            0.63159
Standard Error (SE)                 0.79472
Mean Absolute Deviation (MAD)       0.59165
Mean Abs Percentage Error (MAPE)      16.57
Mean Percentage Error (MPE)           -1.81
Number of Cases                          15

Forecast (T) = 5.84858 + 0.31442 * T

          95% C.I.                 95% C.I.

Lead    Lower Bound   Forecast   Upper Bound

   1       4.60534     6.16300      7.72066
   2       4.91179     6.47742      8.04305
   3       5.21789     6.79184      8.36579

smooth both the local average and trend estimates.  Holt’s model uses two
smoothing constants, one for the smoothed local average (Alpha) and one
for the trend estimate (Beta).

Winter’s models are used when the data exhibit trend and seasonality.  The
additive model is used when the seasonal influences are additive, that is, the
seasonal influences have the same magnitude from year to year.  The
multiplicative model is appropriate when the seasonal swings are wider for
years with higher levels.  Both models use three smoothing constants, for
the local average (Alpha), trend (Beta), and season (Gamma).  You must
also specify the Season Length.

All five models require that you enter values for the applicable Smoothing
Constants.  Some models give you the option of entering Initial Values and
the number of future Periods to Forecast.

Example Brown’s 1-P linear exponential smoothing is illustrated using earnings per
share data for Exxon for the years 1962 to 1976.  The data are listed on page
318, and are stored in the file Sample Data\Exxon.sx.

The dialog box on the preceding page shows the exponential smoothing
options selected for the Exxon data.  The results are:

The coefficient table above lists a number of summary statistics that are
useful for checking the adequacy of the model (Hanke and Reitsch 1989). 
You can also use the residuals (see Save Residuals on page 323) to examine
the model fit.
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Brown's 1-P Linear Exponential Forecast Table for EARNINGS

         Actual     1st Exp     2nd Exp                            Forecast

Time      Value     Average     Average      Trend     Forecast       Error

   0               -1.62107    -4.38729      0.307
   1    1.94000    -1.26496    -4.07505      0.312      1.45250     0.48750
   2    2.37000    -0.90147    -3.75769      0.317      1.85736     0.51264
   3    2.44000    -0.56732    -3.43866      0.319      2.27212     0.16788
   4    2.41000    -0.26959    -3.12175      0.317      2.62305    -0.21305
   5    2.53000     0.01037    -2.80854      0.313      2.89948    -0.36948
   6    2.77000     0.28633    -2.49905      0.309      3.14249    -0.37249
   7    2.97000     0.55470    -2.19368      0.305      3.38120    -0.41120
   8    2.89000     0.78823    -1.89549      0.298      3.60845    -0.71845
   9    2.96000     1.00541    -1.60540      0.290      3.77014    -0.81014
  10    3.39000     1.24387    -1.32047      0.285      3.90630    -0.51630
  11    3.42000     1.46148    -1.04228      0.278      4.09313    -0.67313
  12    5.45000     1.86033    -0.75201      0.290      4.24343     1.20657
  13    7.02000     2.37630    -0.43918      0.313      4.76294     2.25706
  14    5.60000     2.69867    -0.12540      0.314      5.50461     0.09539
  15    5.90000     3.01880     0.18902      0.314      5.83652     0.06348

The forecasts for the years 1977 to 1979 are displayed with their 95%
confidence intervals.  

Exponential

Smoothing

Results Menu

Once you’ve specified and computed an exponential smoothing analysis, a
Results menu appears on the menu at the top of the Statistix window.  Select
the Results menu to access the pull-down menu displayed below. 

Select Coefficient Table from the menu to redisplay the results presented
above.  Select Options from the menu to return to the Exponential
Smoothing dialog box used to generate these results.  The remaining options
are discussed below.

Forecast Table The forecast table lists the actual value, first and second exponential
averages, slope, forecast, and forecast error for each time period in the data. 
The forecast table for the model specified on page 320 is displayed below.
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Plot Selecting Plot from the menu produces a time series plot that shows both
the actual time series data and the fitted data.  The forecasts are also plotted. 
The plot for the Exxon data is shown below.

Select Titles from the Results menu to change the plot’s titles.  Select Graph
Preferences to change other details of the plot such as colors and point
symbols (see Chapter 1 for details).

Save Residuals Use the Save Residuals procedure to save the fitted values (forecasts)
and/or residuals (forecast errors) in new or existing variables for later
analysis.  Enter a variable name in the Fitted Values Variable box and/or
the Residuals Variable box.

Computation-

al Notes

Computations for the single and linear trend models follow those described
in Abraham and Ledolter (1983).  Computations for Winter’s models follow
Thomopoulos (1980).
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SARIMA

Specification

The SARIMA procedure allows you to fit a variety of models to data,
including both nonseasonal and multiplicative, and nonmultiplicative
seasonal models.  SARIMA stands for Seasonal AutoRegressive Integrated
Moving Average.  It’s a procedure for modeling time series popularized by
Box and Jenkins (1976).  MA and AR terms need not be sequential, so non-
significant terms don’t need to be included in the model. 

Output includes parameter estimates, approximate significance levels, and
several statistics useful for diagnosing model fit.  You can also obtain
forecasts with confidence intervals.  You can save fitted values and
residuals to evaluate model adequacy.  Estimation is based on unconditional
least squares, also known as the backcasting method.  

First select the name of your Time Series Variable.  You can press the
down-arrow button next to the variable box to display the list of your
variables. Next you specify the ARIMA model by filling in values in the
relevant controls.  You can also specify the Marquardt and Nelder-Mead
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criteria, the maximum number of iterations, and initial values.  Press the OK
button to begin the analysis.

For example, the dialog box on the preceding page fits the ARIMA model

12(0, 1, 1)X(0, 1, 1)  to the airline data described on the next page.

A description of each of the dialog box fields is listed below:

Time Variable:  Variable name for the time series variable
AR Lags: Lags of nonseasonal autoregressive terms in model
Nonseasonal d:  Order of nonseasonal differencing
MA Lags: Lags of nonseasonal moving average terms in model
SAR Lags: Seasonal lags of seasonal autoregressive terms in model
Seasonal D:  Order of seasonal differencing
SMA Lags: Seasonal lags of seasonal moving average terms in model
Season Length:  Period of seasonality
Fit Constant: Model should include a constant term
Marquardt Criterion:  Criterion to stop nonlinear least squares
Nelder-Mead Search:  Perform simplex search after nonlinear least squares
Nelder-Mead Criterion:  Criterion to stop Nelder-Mead simplex search
Maximum iterations:  Number of iterations allowed
Initial Values:  List of starting values for any of the model parameters

Most of these fields are self-explanatory.  Estimation is initially performed
with Marquardt’s nonlinear least squares procedure.  After each iteration,
the changes in the parameter estimates are checked.  If all parameters have
changed less in absolute value than the Marquardt Criterion, the procedure
terminates and is assumed to have converged successfully.  If you checked
the Nelder-Mead Simplex Search box, a Nelder-Mead simplex search is
performed after the Marquardt procedure in an attempt to further reduce the
unconditional sums of squares.  Unlike the Marquardt criterion, the Nelder-
Mead criterion is based on the reduction of the unconditional sums of
squares.  After each iteration, the reduction in the unconditional sums of
squares is checked.  If the reduction is less than the number specified for the
Nelder-Mead Criterion, the procedure terminates and convergence is
assumed.  Both Marquardt and Nelder-Mead stop when the number of
iterations equals Maximum Iterations if convergence hasn’t occurred. 
 
Note: When specifying AR, MA, SAR, or SMA terms, all lags must be
specified.  For example, to specify an AR(3) model, you would enter
“1 2 3”, not “3”   The latter specification is appropriate if you want the AR
coefficients for lags 1 and 2 constrained to zero.
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Unconditional Least Squares SARIMA Model for Z

Nonseasonal Differencing of Order 1
Seasonal Differencing of Order 1, Period 12
NOTE: No Constant Term in Model

  Term    Coefficient     Std Error    Coef/SE          P

  MA  1       0.39308       0.08033       4.89     0.0000
  SMA 1       0.61263       0.06941       8.83     0.0000

MS (Backcasts Excluded)     0.00133
DF                              129
SS (Backcasts Excluded)     0.17213   SS Due to Backcasts     0.00387
N Before Differencing           144
N After Differencing            131
Marquardt Criterion of 0.010 was met.
Simplex Criterion of   0.010 was met.
Ljung-Box Portmanteau Lack-of-fit Diagnostics
Lag (DF)   =    12(    10)      24(    22)      36(    34)      48(    46)
Chi-Sq (P) =  9.33(0.5015)   25.43(0.2769)   35.38(0.4028)   44.03(0.5553)

Example We use the data from Box and Jenkins (1976, p. 304) for our example.  You
can view the data by opening Sample Data\airline.sx.  The data in the
variable Z are the natural logs of monthly passenger totals (in thousands) in
international air travel for 12 years from January 1949 to December 1960. 
The variable W is created by first seasonally differencing Z and then
nonseasonally differencing the seasonal difference.  Using
Transformations in Data Management, W is created in two steps by:

  W = Z - LAG (Z, 12)

  W = W - LAG (W)

That is, W = DD Z, where D is the differencing operator.  The dialog box12

12on page 324 specifies the ARIMA model (0, 1, 1)X(0, 1, 1) .

The results are summarized in the coefficient table below.

Parameter significance can be judged with the t-like statistic Coef/SE.  The
p-value for this statistic assumes a standard normal distribution.  Overall
model fit can be judged with the Ljung-Box statistic (Ljung and Box, 1978),
which is calculated for lags at multiples of 12.  Small p-values indicate that
the model fit is poor.  In the example above, the p-values are large enough
to suggest lack of fit isn’t a problem.

As noted, model terms don’t need to be sequential.  As an example, we’ll fit
a nonmultiplicative seasonal model to the airline data set.  The model we’ve

t talready used is  DD z  = (1 - ΦB)(1 - ΘB )a   (D is the differencing12 12

operator; other terms are explained in Box and Jenkins 1976).  When

t t t-1 t-12 t-13expanded, this model is  DD z  = a  - Φa  - Θa  + ΦΘa .  The more12

t t 1 t-1 12 t-12 13 t-13general nonmultiplicative model is  DD z  = a  - Φ a  - Φ a  - Φ a .12  

This model is specified in the dialog box below.
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While this model has a smaller MS (0.00126) than the multiplicative model,
it also requires an additional parameter.  Box and Jenkins (1976, p. 324)
briefly consider how to examine whether such models are improvements
over their multiplicative counterparts.

SARIMA

Results Menu

Once you’ve specified and computed an ARIMA model, a Results menu
appears on the menu at the top of the Statistix window.  Click on Results to
access the pull-down menu displayed below. 

Select Coefficient Table from the Results menu to redisplay the results

Chapter 10, Time Series 327



          95% C.I.                 95% C.I.

Lead   Lower Bound    Forecast  Upper Bound

   1       6.03779     6.10938      6.18098
   2       5.97163     6.05537      6.13912
   3       6.08325     6.17760      6.27195
   4       6.09434     6.19821      6.30209
   5       6.11796     6.23056      6.34315
   6       6.24756     6.36825      6.48894
   7       6.37619     6.50446      6.63274
   8       6.36544     6.50088      6.63631
   9       6.18287     6.32510      6.46734
  10       6.05870     6.20742      6.35614
  11       5.90898     6.06392      6.21886
  12       6.00841     6.16933      6.33025

presented on page 326.  Select Options from the menu to return to the
SARIMA dialog box used to generate these results.  The remaining options
are discussed below.

Forecasts The Forecast procedure lets you forecast future observations.  It also gives
confidence intervals for the forecasts.  

First enter a value for the Number of Periods, which is the number of future
time intervals you want to forecast.  You can also specify the C. I.
Percentage Coverage for computing confidence levels.

The first 12 forecasts for our airline ticket sales example are presented
below.

Plot Selecting Plot from the results menu produces a time series plot that shows
both the actual time series data and the fitted data.  The forecasts are also
plotted.  The plot for the airline ticket sales data is shown on the next page. 
The number of future time periods forecast can be changed by using the
Forecasts procedure described above.
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Select Titles from the Results menu to change the plot’s titles.  Select Graph
Preferences to change other details of the plot such as colors and point
symbols (see Chapter 1 for details).

Save Residuals Use the Save Residuals procedure to save the fitted values, residuals
(forecast errors), or forecasts for later analysis. 

Because of differencing and lagging, fitted values and residuals may have
fewer cases than the original series.  The Fitted Values Variable stores
fitted values corresponding to cases used in the analysis.  The Forecast
(Future) Variable is used to save forecasts corresponding to time periods
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Variance - Covariance Matrix for Coefficients

                MA  1      SMA 1  

  MA  1       0.00645
  SMA 1    -3.165E-04    0.00482

after the cases used for the analysis.  Enter the Number of Periods to
Forecast when using the Forecast (Future) Variable.

Variance-

Covariance

Matrix

The Variance-covariance matrix selection displays the variance-covariance
matrix of the estimated model coefficients.

Computation-

al Notes

Computations generally follow those outlined in Box and Jenkins (1976). 
Initial values for the nonseasonal AR parameters are computed as described
on page 499.  These, along with the mean of the series, are used to construct
an initial estimate of the constant (Box and Jenkins 1976, p. 500) if the
model contains one.  All other parameters are initially set to 0.1.  The
Marquardt procedure follows Box and Jenkins (1976) with modifications
suggested by Nash (1979).  Numerical derivatives use “Nash’s
compromise” (Nash, 1979, eq. 18.5).  The Nelder-Mead procedure is
patterned after Nash’s outline.
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Quality Control

Statistix offers a number of quality control or statistical process control
(SPC) procedures.  SPC methods are used to improve the quality of a
product or service by examining the process employed to create the product
or service.  

The Pareto Chart procedure produces a Pareto chart, which is used in SPC
to identify the most common problems or defects in a product or service.  It
is a histogram with the bars sorted by decreasing frequency.

A control chart plots a measurement sampled from a process by sample
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number over time.  A center line is drawn to represent the average value of
the quality characteristic when the process is stable, that is, “in control”. 
Two lines are drawn on the control chart to represent the upper and lower
control limits (UCL and LCL).  A point that falls outside the control limits
is evidence that the process is “out of control”.  Statistix uses “3-sigma”
control limits that are computed as the center line value plus or minus three
times the standard deviation of the process statistic being plotted.

A quality characteristic that can’t be measured on a quantitative scale but
can be classified as conforming or nonconforming, is called an attribute. 
Consider a cardboard juice container as an example: The seams are either
conforming (will not leak) or nonconforming (will leak).  Statistix computes
four attributes control charts—the p chart, np chart, c chart, and u chart.

The P Chart procedure plots the fraction nonconforming.  The Np Chart
procedure plots the number nonconforming.

The C Chart procedure plots the number of nonconformities per inspection
unit (e.g., flaws on the finish of a television set).  The U Chart procedure
plots the average number of nonconformities per unit.

A quantitative quality characteristic, such as the diameter of piston rings, is
called a variable.  Statistix computes six control charts for variables—the X
bar chart, R chart, S chart, I chart, MR chart, and EWMA chart.

The X Bar Chart procedure plots the average of samples; it’s used to
control the process average of a variable.  

The R Chart procedure plots the sample range.  The S Chart procedure
plots the sample standard deviation.  These plots are used to control the
variability of a process.  

The I Chart procedure plots individuals—variables with a sample size of
one.  The MR Chart procedure plots the moving range of individuals.

The EWMA Chart procedure plots an exponentially weighted moving
average.  It can be used to control the process mean using individuals or
sample averages.

See Montgomery (1991) for computational details for all of the procedures
discussed in this chapter.
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Pareto Chart

Specification

The Pareto Chart is used to identify the most frequent causes of defects.  It
displays a histogram with the bars ordered by frequency.

First move the name of the variable that contains the defect classifications
to the Defect Cause Variable box.  This variable can be of any type—real,
integer, date, or string.  Strings are truncated to ten characters.

You can enter your data one defect at a time, so that each case in your data
set represents one defect.  These types of data are often tabulated as they are
collected, in which case it’s more convenient to enter the data in two
columns, one for the defect cause and one for the count of defects.  In this
case you must move the name of the variable containing the counts of
defects for each cause to the Defect Count Variable box.

You can limit the number of bars by entering a value in the Maximum
Defect Categories edit control.  If there are more categories than this value,
the least frequently recorded categories are excluded from the chart.

Check the Display Cumulative Percent check box to have a cumulative
distribution curve drawn on the Pareto chart.

Example We use data from Montgomery (1991, p. 119) for our example.  The various
reasons that aircraft tanks were classified defective were collected over
several months.  The data were entered into Statistix using two variables. 
The variable CAUSE is used to identify the defect cause, and the variable
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CASE   CAUSE          COUNT

  1    Adhesive          6

  2    Alignment         2

  3    Alodine           1

  4    Cast voids        2

  5    Damaged          34

  6    Delam comp        2

  7    Dimensions       36

  8    Fairing           3

  9    Film              5

 10    Machining        29

 11    Masking          17

 12    Out order         4

 13    Paint dam         1

 14    Paint spec        2

 15    Primer dam        1

 16    Procedure         1

 17    Rusted           13

 18    Salt spray        4

 19    Wrong part        3

COUNT records the count for each cause.

The analysis is specified on the preceding page.  The results are as follows:
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P Chart

Specification

The P Chart is the control chart for the fraction of a sample that is noncon-
forming.  P charts are used for attributes—quality characteristics that can be
classified as conforming or nonconforming.

The p chart is computed both from the number of defects per sample and the
sample size.  First move the name of the variable that contains the counts of
defects for each sample to the Defect Count Variable box.  If the sample
size is constant, select the Constant sample size radio button and enter the
sample size in the Sample Size Constant edit control.  If the sample size is
not always the same, select the Variable sample size radio button and move
the name of the variable that contains the sample size for each case to the
Sample Size Variable box.

The center line and the control limits are computed from p, the fraction
nonconforming.  You can choose to enter a standard or historical value for p
for this purpose, or have p computed from the data.  Make your choice by
selecting one of the two p radio buttons.  When you select Compute From
Data, you may specify the first and last case number used to compute p.  If
these case numbers are left blank, all cases are used.  When you select
Standard Value, you must enter a value in the Standard p edit control.

Example We use data from Montgomery (1991, p. 151) for our example.  Cardboard
cans being manufactured for orange juice concentrate were sampled from
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CASE    DEFECTS     CASE    DEFECTS

  1        12        16         8

  2        15        17        10

  3         8        18         5

  4        10        19        13

  5         4        20        11

  6         7        21        20

  7        16        22        18

  8         9        23        24

  9        14        24        15

 10        10        25         9

 11         5        26        12

 12         6        27         7

 13        17        28        13

 14        12        29         9

 15        22        30         6

the machine at half-hour intervals.  Each sample contained 50 cans.  The
number of cans with defective seams were recorded for each sample.

The p chart model is specified in the dialog box on the preceding page.  The
results are shown in the figure below.

The fraction of defective cans is plotted for each sample.  The center line is
plotted at the average value for p which is 0.2313.  The 3-sigma control
limits are labeled on the right side: UCL = 0.4102, LCL = 0.0524.  Two
values exceed the UCL, indicating that the process is out of control.  These
case numbers (15 and 23) are noted at the bottom of the chart.
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Np Chart

The Np Chart is the control chart for the number of nonconforming units. 
Np charts are used for attributes—quality characteristics that can be
classified as conforming or nonconforming.  The np chart gives the same
results as the p chart discussed earlier (page 335), the only difference is the
units of the vertical axis.

Specification

The np chart is computed from the number of defects per sample and the
sample size.  First select the name of the variable that contains the counts of
defects for each sample and move it to the Defect Count Variable box.  The
sample size must be a constant.  Enter the number in the Sample Size box.

The center line and the control limits are computed from p, the fraction
nonconforming.  You can choose to enter a standard or historical value for p
for this purpose, or have p computed from the data.  Make your choice by
selecting one of the two p radio buttons.  When you select Compute From
Data, you may specify the first and last case number used to compute p.  If
these case numbers are left blank, all cases are used.  When you select
Standard Value, you must enter a value in the Standard p edit control. 

Example We use data from Montgomery (1991, p. 151) for our example.  Cardboard
cans being manufactured for orange juice concentrate were sampled from
the machine at half-hour intervals.  Each sample contained 50 cans.  The
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CASE    DEFECTS     CASE    DEFECTS

  1        12        16         8

  2        15        17        10

  3         8        18         5

  4        10        19        13

  5         4        20        11

  6         7        21        20

  7        16        22        18

  8         9        23        24

  9        14        24        15

 10        10        25         9

 11         5        26        12

 12         6        27         7

 13        17        28        13

 14        12        29         9

 15        22        30         6

number of cans with defective seams were recorded for each sample.  The
data are listed below, and stored in the file Sample Data\juice.sx.

The Np chart model is specified in the dialog box on the preceding page. 
The results are shown in the figure below.

The number of defective cans is plotted for each sample.  The center line is
plotted at the historical value for np, 50 × 0.231 = 11.6.  The 3-sigma upper
and lower control limits are labeled on the right side at 20.5 and 2.6.  Two
values exceed the UCL at cases 15 and 23, which are noted at the bottom of
the chart.
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C Chart

Specification

The C Chart is the control chart for nonconformities (defects).  A product
may contain one or more defects and not be considered defective.  If, for
example, a television cabinet has a flaw in the finish, we wouldn’t
necessarily want to reject the television.  In these situations we’re more
interested in the number of defects per inspection unit.

The c chart is computed from the number of defects per inspection unit. 
Enter the name of the variable that contains the counts of defects for each
inspection unit.  

The center line and the control limits are computed from c, the number of
nonconformities per inspection unit.  You can enter a standard or historical
value for c, or you can use the average value of c computed from the data. 
When c is estimated from the data, you can specify the first and last case
number used to compute the average value.  If these case numbers are left
blank, as in the dialog box above, all cases are used.  When you select
Standard Value, you must enter a value in the Standard c edit control.

Example We use data from Montgomery (1991, p. 173) for our example.  Printed
circuit boards were inspected for defects.  The inspection unit was defined
as 100 circuit boards.  The number of defects per 100 circuit boards for 26
samples are listed in the table on the next page.  The data are stored in the
file Sample Data\circuit.sx.
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CASE    DEFECTS      CASE    DEFECTS

  1        21         14        19

  2        24         15        10

  3        16         16        17

  4        12         17        13

  5        15         18        22

  6         5         19        18

  7        28         20        39

  8        20         21        30

  9        31         22        24

 10        25         23        16

 11        20         24        19

 12        24         25        17

 13        16         26        15

The resulting c chart for the variable DEFECTS is illustrated below.

The number of nonconformities is plotted for each inspection unit (100
printed circuit boards).  The center line is plotted at the average value for c
19.8.  The 3-sigma upper and lower control limits are labeled on the right
side at 33.2 and 6.5.  The value at case 6 is below the LCL, and the value at
case 20 is above the UCL.  The process is not in control.
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U Chart

The U Chart is the attribute control chart for nonconformities per unit.  It is
used in controlling the nonconformities per unit when the sample size is not
one inspection unit.  The c chart discussed earlier (page 339) is used when
the sample size is one.

Specification

First move the name of the variable containing the number of defects for
each sample to the Defect Count Variable box.  If the sample size is
constant, select the Constant sample size radio button and enter the sample
size in the Sample Size Constant edit control.  If the sample size is not
always the same, select the Variable sample size radio button and move the
name of a second variable that contains the sample size for each case to the
Sample Size Variable box.

The center line and control limits are computed from u, the number of
nonconformities per unit.  You can enter a standard or historical value for u,
or you can use the average value of u computed from the data.  When u is
estimated from the data, you can specify the first and last case number used
to compute the average value.  If these case numbers are left blank, as in the
dialog box above, all cases are used.  When you select Standard Value, you
must enter a value in the Standard u edit control.
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CASE  DEFECTS     CASE  DEFECTS

  1      10        11       9

  2      12        12       5

  3       8        13       7

  4      14        14      11

  5      10        15      12

  6      16        16       6

  7      11        17       8

  8       7        18      10

  9      10        19       7

 10      15        20       5

Example We use data from Montgomery (1991, p. 181) for our example.  Five
personal computers were periodically sampled from the final assembly line
and inspected for defects.  The inspection unit was one computer.  The
sample size was five.  

The total number of defects for each sample of five computers are listed
below, and are stored in the file Sample Data\computers.sx.

The variable for the defect counts and the sample size are entered in the u
chart dialog box on the preceding page.  The results are presented in the
figure below.

The process appears to be in control.
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X Bar Chart

Specification

The X Bar Chart, which plots sample averages, is used to control the
process average of a variable.  A quantitative quality characteristic, such as
the diameter of a piston ring, is called a variable.  This chart is normally
used in conjunction with either the R chart or the S chart to control the
variability in the process.  

The X bar chart requires that the quality characteristic is sampled with a
sample size of at least two (use the I chart when the sample size is one). 
The data must be arranged in a Statistix data set so each case represents one
sample and the individual measurements of a sample are recorded in
separate variables (see the example data on the next page).  If your data are
presented in a single column, you can use the Unstack command to
rearrange the data (see Chapter 2).

Move the names of the variables containing the individual measurements of
the quality characteristic to the X Bar Chart Variables list box.  You must
select at least two variables, but no more than 20.

The center line and control limits are computed from the mean (mu) and
standard deviation (sigma) of the process.  You can choose to enter standard
or historical values for mu and sigma, or you can have estimates computed
from the data.  If you select the Compute From Data radio button, you must
also select a method for estimating sigma—the R-Bar or S-Bar method. 
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CASE     X1        X2        X3        X4        X5

  1    74.030    74.002    74.019    73.992    74.008

  2    73.995    73.992    74.001    74.011    74.004

  3    73.988    74.024    74.021    74.005    74.002

  4    74.002    73.996    73.993    74.015    74.009

  5    73.992    74.007    74.015    73.989    74.014

  6    74.009    73.994    73.997    73.985    73.993

  7    73.995    74.006    73.994    74.000    74.005

  8    73.985    74.003    73.993    74.015    73.988

  9    74.008    73.995    74.009    74.005    74.004

 10    73.998    74.000    73.990    74.007    73.995

 11    73.994    73.998    73.994    73.995    73.990

 12    74.004    74.000    74.007    74.000    73.996

 13    73.983    74.002    73.998    73.997    74.012

 14    74.006    73.967    73.994    74.000    73.984

 15    74.012    74.014    73.998    73.999    74.007

 16    74.000    73.984    74.005    73.998    73.996

 17    73.994    74.012    73.986    74.005    74.007

 18    74.006    74.010    74.018    74.003    74.000

 19    73.984    74.002    74.003    74.005    73.997

 20    74.000    74.010    74.013    74.020    74.003

 21    73.988    74.001    74.009    74.005    73.996

 22    74.004    73.999    73.990    74.006    74.009

 23    74.010    73.989    73.990    74.009    74.014

 24    74.015    74.008    73.993    74.000    74.010

 25    73.982    73.984    73.995    74.017    74.013

 26    74.012    74.015    74.030    73.986    74.000

 27    73.995    74.010    73.990    74.015    74.001

 28    73.987    73.999    73.985    74.000    73.990

 29    74.008    74.010    74.003    73.991    74.006

 30    74.003    74.000    74.001    73.986    73.997

 31    73.994    74.003    74.015    74.020    74.004

 32    74.008    74.002    74.018    73.995    74.005

 33    74.001    74.004    73.990    73.996    73.998

 34    74.015    74.000    74.016    74.025    74.000

 35    74.030    74.005    74.000    74.016    74.012

 36    74.001    73.990    73.995    74.010    74.024

 37    74.015    74.020    74.024    74.005    74.019

 38    74.035    74.010    74.012    74.015    74.026

 39    74.017    74.013    74.036    74.025    74.026

 40    74.010    74.005    74.029    74.000    74.020

You should choose the method that corresponds to the control chart you’re
using to control the process variability, either the R chart or the S chart. 
You can also specify the First Case and Last Case to use to compute mu
and sigma.  If these case numbers are left blank, all cases are used.  

If you select the Standard Value method, you must enter values in the
Standard Mu and Standard Sigma edit controls.

Check the Test Special Causes check box to have eight tests for special
causes performed.  These tests are described on the next page.

Example We use data from Montgomery (1991, p. 206) for our example.  The data
are listed below, and are stored in the file Sample Data\pistons.sx. 

Automotive piston rings were sampled from a forge.  Five rings were taken
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per sample.  The inside diameter of the piston ring—listed on the preceding
page—was recorded.

The parameters for the X bar chart are specified in the dialog box on page
343.  Note that cases 1 through 25 have been entered as the cases (or
samples) to use to estimate mu and sigma.  The results are presented below.

The sample averages are plotted for each case.  The values for the center
line and the 3-sigma control limits are labeled on the right side.  The
estimates for sigma and expected R bar computed from the first 25 cases are
given in the footnote.

Note the upward drift in the process mean, starting around case 34.  The
points at cases 37, 38, and 39 exceed the UCL.  The points at cases 36 and
40 are marked with a 5.  This means that these points failed test number 5:
two out of three consecutive points in zone A (beyond the 2-sigma limits).  

Tests for

Special

Causes

A “special cause”, or “assignable cause”, is signaled on control charts when
a point is plotted outside the 3-sigma control limits.  In addition to a point
outside the UCL and LCL, there are other tests based on patterns of more
than one point that can be applied to the X bar and I charts.  These tests are
summarized by Nelson (1984).
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When these tests are selected, Statistix will indicate an out of control point
using a digit indicating the test that caused the signal.  If a point fails more
than one test, the lowest digit is used to mark the point.

Test #1: A point outside the 3-sigma control limits.

Test #2: Nine points in a row on one side of the center line.

Test #3: Six points in a row, either all increasing or all decreasing.

Test #4: Fourteen points in a row, alternating up and down.

Tests #5 through #8 refer to 
zones A, B, and C.  Zone A is 
the area of the chart between 
the 2- and 3-sigma lines.  Zone 
B is the area between the 1- 
and 2-sigma lines.  Zone C is 
the area between the center line 
and the 1-sigma line.

Test #5: Two out of three 
points in a row in zone A or 
beyond on one side of the center line.

Test #6: Four out of five points in a row in zone B or beyond on one side of
the center line.

Test #7: Fifteen points in a row in zone C on either side on the center line.

Test #8: Eight points in a row on either side of the center line, but none of
them in zone C.

By using a number of these tests at once, you increase the sensitivity of the
control chart.  But you also increase the chance of a false alarm. 
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R Chart

Specification

The R Chart, which plots sample ranges, is used to control the process
variability of a variable.  A quantitative quality characteristic, such as the
diameter of a piston ring, is called a variable.  The S chart is an alternative
control chart for process variability.

The R chart requires that the quality characteristic is sampled with a sample
size of at least two (use the MR chart when the sample size is one).  The
data must be arranged in a Statistix data set such that each case represents
one sample and the individual measurements of a sample are recorded in
separate variables. If your data are presented in a single column, you can
use the Unstack command to rearrange the data (see Chapter 2).

Select the names of the variables containing the individual measurements of
the quality characteristic and move them to the R Chart Variables list box. 
You must select at least two variables, but no more than 20.

The center line and control limits are computed from the standard deviation
(sigma) of the process.  You can choose to enter a standard or historical
value for sigma, or you can have an estimate computed from the data.  If
you select the Compute From Data radio button, you can specify the First
Case and Last Case to use to compute sigma.  If these case numbers are left
blank, all cases are used.  
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If you select the Standard Value method, you must enter a value in the
Standard Sigma edit control.

Example We use example data from Montgomery (1991, p. 206) for our example. 
Automotive piston rings were sampled from a forge.  Five rings were select-
ed per sample.  The inside diameter of each piston ring was measured.  This
data set is also used as the X Bar Chart example and is listed on page 344. 
The data are available from the file Sample Data\pistons.sx.

The R chart model is specified in the dialog box on the preceding page. 
The results are presented below.

The sample ranges are plotted for each case.  The values for the center line
and the 3-sigma control limits are labeled on the right side.  The value used
for sigma, in this case estimated from the data, is given at the bottom of the
R chart.
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S Chart

Specification

The S Chart, which plots sample standard deviations, is used to control the
process variability of a variable.  A quantitative quality characteristic, such
as the diameter of a piston ring, is called a variable.  The R chart discussed
earlier is another control chart for process variability.

The S chart requires that the quality characteristic is sampled with a sample
size of at least two (use the MR chart when the sample size is one).  The
data must be arranged in a Statistix data set so each case represents one
sample and the individual measurements of a sample are recorded in
separate variables.  If your data are presented in a single column, you can
use the Unstack command to rearrange the data (see Chapter 2).

Select the names of the variables containing the individual measurements of
the quality characteristic and move them to the S Chart Variables list box. 
You must list at least two variables, but no more than 20.

The center line and control limits are computed from the standard deviation
(sigma) of the process.  You can choose to enter a standard or historical
value for sigma, or you can have an estimate computed from the data.  If
you select the Compute From Data radio button, you can specify the First
Case and Last Case to use to compute sigma.  If these case numbers are left
blank, all cases are used.  
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If you select the Standard Value method, you must enter a value in the
Standard Sigma edit control.

Example We use data from Montgomery (1991, p. 206) for our example.  Automotive
piston rings were sampled from a forge, five rings per sample.  The inside
diameter of the piston ring was the quality characteristic of interest.  This
data set was also used as the X Bar Chart example and is listed on page 344. 
The data are available from the file Sample Data\pistons.sx.

The S chart model is specified in the dialog box on the preceding page.  The
results are displayed below.

The sample standard deviations are plotted for each sample.  The values for
the center line and the 3-sigma control limits are labeled on the right side. 
The value used for sigma, in this case estimated from the data, is given at
the bottom of the S chart.
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I Chart

Specification

The I Chart is the control chart for individuals used to control the process
mean.  This chart is sometimes called the X chart.  The process variability
is estimated from the moving range, which is the difference between two
successive observations.  The MR chart is the companion chart used to
control the process variability.

Select the name of the variable that contains the individual observations and
move it to the I Chart Variable box.

The center line and control limits are computed from the mean (mu) and
standard deviation (sigma) of the process.  You can choose to enter
standard or historical values for mu and sigma, or you can have estimates
computed from the data.  If you select the Compute From Data radio
button, you can specify the First Case and Last Case to use to compute mu
and sigma.  If these case numbers are left blank, all cases are used.  

If you select the Standard Value method, you must enter values in the
Standard Mu and Standard Sigma edit controls.

Check the Test Special Causes check box to have eight tests for special
causes performed.  These tests are described on page 345.
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CASE   VISCOSITY       CASE   VISCOSITY

  1      33.75          16      33.50

  2      33.05          17      33.25

  3      34.00          18      33.40

  4      33.81          19      33.27

  5      33.46          20      34.65

  6      34.02          21      34.80

  7      33.68          22      34.55

  8      33.27          23      35.00

  9      33.49          24      34.75

 10      33.20          25      34.50

 11      33.62          26      34.70

 12      33.00          27      34.29

 13      33.54          28      34.61

 14      33.12          29      34.49

 15      33.84          30      35.03

Example We use data from Montgomery (1991, p. 242) for our example.  The
viscosity of batches of aircraft paint primer was measured.  Because it takes
several hours to make one batch of primer, it wasn’t practical to accumulate
samples of more than one batch.  The data from 30 batches of primer are
listed below.  The data are available from the file Sample Data\paint.sx.

The dialog box on the preceding page specifies the I chart model.  Cases 1-
15 are used to estimate the process mean and standard deviation.  The
results are as follows:

The individual observed values of primer viscosity are plotted for each case. 
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Note the shift in the process mean at case 20.  Two points are plotted above
the UCL.  This process is clearly out of control.

MR Chart

Specification

The MR Chart is the control chart for individuals used to control process
variability.  The process variability is estimated from the moving range, the

i i-1difference between two successive observations: MR = |x  - x |.

Select the name of the variable that contains the individual observations and
move it to the MR Chart Variable box.

The center line and control limits are computed from the standard deviation
(sigma) of the process.  You can choose to enter a standard or historical
value for sigma, or you can have an estimate computed from the data.  If
you select the Compute From Data radio button, you can specify the First
Case and Last Case to use to compute sigma.  If these case numbers are left
blank, all cases are used.  

If you select the Standard Value method, you must enter a value in the
Standard Mu edit control.
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Example We use data from Montgomery (1991, p. 242) for our example.  The
viscosity of batches of aircraft paint primer was measured.  Because it takes
several hours to make one batch of primer, it wasn’t practical to accumulate
samples of more than one batch.  The example uses 30 batches of primer. 
This data set was also used for the I Chart example and is listed on page
352.  The data are available from the file Sample Data\paint.sx.

The dialog box on the preceding page specifies the MR chart model.  Cases
1-15 are used to estimate the process standard deviation.  The results are
presented below.

The moving ranges are plotted for each case, starting with the second case. 
The center line and 3-sigma UCL are labeled on the right side.  The
estimates for sigma and expected MR bar, based on the first 15 cases, are
given in the footnote.

The spike at case 20 signals the shift in the process mean observed in the
example I chart shown on page 352.

Montgomery (1991) warns that caution should be used when examining
patterns in MR charts.  Because the moving ranges are correlated,  runs and
patterns arise naturally in the charts.
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EWMA Chart

Specification

The EWMA Chart is a control chart for variables used to control the
process mean.  The value plotted on the chart is an exponentially weighted
moving average incorporating data from all previous samples as well as the
sample mean itself.  This chart reacts faster than the X bar chart to small
shifts in the process mean but reacts slower to large shifts.

The EWMA chart requires that the data be arranged so that each case
represents one sample and the individual measurements of a sample are
recorded in separate variables.  If your sample size is greater than one but
your data are presented in a single column, use the Unstack command to
rearrange the data (see Chapter 2).

Move the names of the variables containing the individual measurements of
the quality characteristic to the EWMA Chart Variables list box.  The
number of variables selected equals the sample size, which must be
constant.

The center line and control limits are computed from the mean (mu) and
standard deviation (sigma) of the process.  You can choose to enter standard
or historical values for mu and sigma, or you can have estimates computed
from the data.  If you select the Compute From Data radio button, you must
also select a method for estimating sigma—the R-Bar or S-Bar method. 
You can also specify the First Case and Last Case to use to compute mu
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and sigma.  If these case numbers are left blank, all cases are used.  

If you select the Standard Value method, you must enter values in the
Standard Mu and Standard Sigma edit controls.

The EWMA chart requires a EWMA Weight that determines the extent to
which past observations influence the exponentially weighted moving
average plotted on the chart.  A small weight results in a slow response to
new values; a large weight results in a fast response to new values.  Values
used for the weight are normally in the range 0.05 - 0.25.

Example We use data from Montgomery (1991, p. 206) for our example.  Automotive
piston rings were sampled from a forge, five rings per sample.  The inside
diameter of the piston ring was recorded.  These data were also used for the
X Bar Chart example and are listed on page 344.  The data are available
from the file Sample Data\pistons.sx.

The EWMA chart is specified in the dialog box on the preceding page.  The
results are as follows:

The process mean and 3-sigma control limits are reported on the right, and
the process standard deviation (sigma) is reported at the bottom.
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12

Survival Analysis

The statistical procedures in the chapter are used to analyze survival time
data.  Survival time is defined as the time to the occurrence of a specific
event, which may be the development of a disease, response to a treatment,
relapse, or death.  Survival analysis has been extended to fields beyond
biomedical studies to include electrical engineering, sociology, and
marketing.  For example of survival time in sociology might be the duration
of first marriage.

A common complication of survival data are censored observations.  A
censored observation is one where the given event of interest was not
recorded, either because the subject was lost to the study, or because the
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study ended before the event occurred.  The emphasis of the procedures in
the chapter are those that can handle censored observations.

The distribution of survival times are described using the survivorship
function (or survivor function) and the hazard function.  The survivorship
function S(t) is defined as the probability that an individual survives longer
than t.  The hazard function h(t) gives the conditional failure rate.  It’s the
probability of failure during a small time interval assuming that the
individual has survived to the beginning of the interval. 

The Kaplan-Meier procedure computes the Kaplan-Meier product limit
estimates of the survival functions.  This method of estimating the survival
functions can handle censored data and does not require any assumptions
about the form of the survival function.  It is appropriate for small and large
data sets.  The survivorship and hazard functions can be plotted.

The Two-Sample Survival Tests procedure computes five nonparametric
tests for comparing two survival distributions: Gehan-Wilcoxon Test, Cox-
Mantel Test, Logrank Test, Peto-Wilcoxon Test, and Cox's F Test.  These
tests are based on the ranks of the survival times and work for censored or
uncensored observations.

The Multi-Sample Survival Tests procedure computes three
nonparametric tests for comparing three or more survival distributions:
Gehan-Wilcoxon Test, Logrank Test, and the Peto-Wilcoxon Test.  These
tests are extensions of the Kruskal-Wallis test discussed in Chapter 5 and
the two-sample survival tests.  These tests can be used to compare survival
times for censored data.

The Mantel-Haenzel Test is used to compare survival experience between
two groups when adjustments for other prognostic factors are needed.  It’s
often used in clinical and epidemiologic studies as a method of controlling
the effects of confounding variables.

The Proportional Hazards Regression procedure computes Cox’s
proportional hazards regression for survival data.  It can be used to establish
the statistical relationship between survival time and independent variables
or covariates measured on the subjects.  The reports include a regression
coefficient table, likelihood test for the overall model, and a variance-
covariance matrix of the coefficients.  The regression coefficients can be
used to compute relative risk, a measure of the effect of a factor on a
subject’s survival time.
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The procedures in this chapter concentrate on survival time analyses that
can handle censored data.  Many other procedures in Statistix are useful for
analyzing uncensored survival time data.   These include the Wilcoxon
Rank Sum Test and Kruskal-Wallis AOV in Chapter 5, Logistic
Regression in Chapter 6, and Two By Two Tables and Spearman Rank
Correlations in Chapter 8.
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Kaplan-Meier

Specification

This procedure computes the Kaplan-Meier product limit estimates of the
survival functions.  This method of estimating the survival functions can
handle censored data and does not require any assumptions about the form
of the survival function.  It is appropriate for small and large data sets.

The procedure produces a survival function table, a percentile with
confidence limits reports, survivorship function plot, and hazard function
plot.

Select the name of the variable containing the survival times and move it to
the Time Variable box.  Select the variable used to indicate whether or not
the event of interest (e.g., death) occurred or not and move it to the Event
Variable box.  The event variable must be coded 0 if the event did not occur
(i.e., censored observation) and 1 if the event did occur (i.e., uncensored
observation).

You can specify a grouping variable using the Group Variable box.  The
values of the group variable are used to divide the survival times into
groups of interest (e.g., treatment).  If you specify a group variable, survival
functions are computed separately for each group.

The product-limit table displays confidence intervals for the survivorship
function.  You can change the C.I. Percent Coverage for the confidence
intervals.
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Data

Restrictions

The event variable must be an integer or real variable and may only contain
the values 0 and 1.  The group variable, if used, may be of any data type. 
Real values are truncated to whole numbers and must be no larger than
99,999.  Strings are truncated to ten characters.

Example The example data are invented remission durations for 10 patients with
solid tumors used for illustration by Lee (1992, p. 71).  Six patients relapse
at 3.0, 6.5, 6.5, 10, 12, and 15 months; 1 patient is lost to follow-up at 8.4
months; and 3 patients are still in remission at the end of the study after 4.0,
5.7, and 10 months.  The remission times and relapse event indicators are
stored in the variables TIME and RELAPSE.

The analysis is specified using the dialog box of the preceding page.  The
first report displayed after pressing the OK button is the product-limit
survival function table displayed below.

The table has one row for each distinct survival time.  The column labeled
“DIED” gives the number of subjects that had the event of interest recorded
at the survival time for the row.  In this example, it’s the number of patients
that relapsed.  The column labeled “CENSORED” gives the number of
censored observations at the survival time for the row.  The “AT RISK”
column gives the number of subjects still in the study before the survival

CASE       TIME   RELAPSE

   1        3.0         1

   2        4.0         0

   3        5.7         0

   4        6.5         1

   5        6.5         1

   6        8.4         0

   7       10.0         1

   8       10.0         0

   9       12.0         1

  10       15.0         1

Kaplan-Meier Product-Limit Survival Distribution

Time Variable:  TIME    
Event Variable: RELAPSE 

             Cen-   At     Lower               Upper

Time  Died  sored  Risk   95% C.I.    S(t)    95% C.I.   SE S(t)    H(t)

 3.0     1     0     10    0.6137    0.9000    0.9808    0.0949    0.1054
 4.0     0     1      9
 5.7     0     1      8
 6.5     2     0      7    0.3581    0.6429    0.8531    0.1679    0.4418
 8.4     0     1      5
10.0     1     1      4    0.2066    0.4821    0.7690    0.1877    0.7295
12.0     1     0      2    0.0688    0.2411    0.5772    0.1946    1.4227
15.0     1     0      1    0.0000    0.0000    0.0000    0.0000         M
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time for the row.  The values for the survivorship function are given in the
column labeled “S(t)” for each survival time that a death (relapse in this
example) occurred.  The lower and upper confidence limits, and the
standard error of the survivorship function are also given.  The last column
gives the value of the hazard function (H(t)) for each survival time.

Kaplan-Meier

Results Menu

Once you’ve specified and computed a Kaplan-Meier analysis, a Results
menu appears on the menu at the top of the Statistix window.  Select the
Results menu to access the pull-down menu displayed below.

Select Product-Limit Table from the menu to redisplay the results presented
on the preceding page.  Select Options from the menu to return to the
Kaplan-Meier dialog box used to generate these results.  The remaining
options are discussed below.

Percentiles One of the statistics that we want to find when analyzing survival analysis
data is the median survival time.  The Percentile report gives the median
survival time with confidence limits, plus the values for other percentiles
that may interest you.  Select Percentiles from the Results menu and a
dialog box like the one shown below appears.

List one or more percentile values in the Percentiles Levels box.  You can
change the C.I. Percent Coverage value.  Press OK to display the report. 
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The report for the example tumor remission data is given below.

The median remission duration for the example data is 9.822 with a 95%
lower limit of 6.500.  The upper limit can’t be computed because of the
insufficient number of uncensored observations, so an M is displayed.

Survivorship

Function Plot

Select Survivorship Function Plot from the Results menu to plot the
survivorship function.  If a group variable was specified on the Kaplan-
Meier dialog box, a separate line is plotted for each group.  The
survivorship function for the example remission data is displayed below.

Hazard

Function Plot

Select Hazard Function Plot from the Results menu to plot the hazard
function.  If a group variable was specified on the Kaplan-Meier dialog box,

Kaplan-Meier Survivorship Percentiles

Time Variable:  TIME
Event Variable: RELAPSE

              Lower                 Upper

Percentile   95% C.I.      Time    95% C.I.

    90         3.000      5.700      6.500
    75         3.000      6.500     12.000
    50         6.500      9.822          M
    25        10.000     11.926          M
    10        12.000     13.756          M
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a separate line is plotted for each group.  The hazard function for the
example remission data is displayed below.

Computation-

al Notes

Computations follow Lee (1992).  The confidence intervals are computed
using the technique described by Simon and Lee (1982).
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Two-Sample Survival Tests

This procedure computes five nonparametric tests for comparing two
survival distributions: Gehan-Wilcoxon Test, Cox-Mantel Test, Logrank
Test, Peto-Wilcoxon Test, and Cox's F Test.  These tests are based on the
ranks of the survival times and work for censored or uncensored
observations.

Specification

Select the variable that contains the survival times and move it to the Time
Variable box.  Select the variable used to indicate whether or not the event
of interest (e.g., death) occurred or not and move it to the Event Variable
box.  Move the variable used to identify the two groups to the Group
Variable box.

Data

Restrictions

The event variable must be an integer or real variable and may only contain
the values 0 and 1.   The group variable may be of any data type but must
have exactly two values.  Real values are truncated to whole numbers and
must be no larger than 99,999.  Strings are truncated to ten characters. 
Cox’s F-Test is only computed for complete of singly censored data.

Example The example data are from Lee (1992, p. 107).  Ten female patients with
breast cancer are randomized to receive either CMF (cyclic administration
of cyclophosphamide, methatrexate, and fluorouracil) or no treatment after
a radical mastectomy.  The remission times recorded at the end of two years
are given on the next page.
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The analysis is specified in the dialog box on the preceding page.  The
results are displayed below.

All four tests provide strong evidence that the two treatments are different. 
The positive sign of the test statistics (Z, C, L, and Z respectively) indicate
that the first treatment, CMF, is more effective than the second.

The Cox’s F-Test can only be used for singly censored or complete samples.
The results above to not include Cox’s F-Test because the data are
progressively censored.  Consider a second example containing singly
censored data.  In an experiment comparing two treatments for solid tumor,
six mice are assigned to treatment A and six to treatment B (Lee, 1992, p.
115). The experiment is terminated after 30 days.  The following survival
times are recorded (+ indicates censored observations).

Treatment A: 8, 8, 10, 12, 12, 13
Treatment B: 9, 12, 15, 20, 30+, 30+

All of the mice die except for two mice that were still alive at the end of the
study.  The analysis is specified in the same manner as before.  The results
are displayed on the next page.

CASE    TIME  RELAPSE   TRT     

   1      23        1   CMF     

   2      16        0   CMF     

   3      18        0   CMF     

   4      20        0   CMF     

   5      24        0   CMF     

   6      15        1   Control 

   7      18        1   Control 

   8      19        1   Control 

   9      19        1   Control 

  10      20        1   Control

Two-Sample Survival Tests

Time Variable:  TIME    
Event Variable: RELAPSE 
Group Variable: TRT      (CMF, Control)

Gehan-Wilcoxon Test           Cox-Mantel Test
  W          18.000             U          2.7500
  Var(W)     57.778             I          1.0875
  Z            2.37             C            2.64
  P          0.0179             P          0.0084

Logrank Test                  Peto-Wilcoxon Test
  S          2.7500             S          2.1313
  Var(S)     1.2106             Var(S)     0.7651
  L            2.50             Z            2.44
  P          0.0124             P          0.0148
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The results for the five different tests are similar.  Lee (1992) discusses
under what circumstances one test may be more powerful than another.

Computation-

al Notes

The computations for these tests can be found in Lee (1992).

Two-sample Survival Tests

Time Variable:  TIME 
Event Variable: DIED 
Group Variable: TRT   (A, B)

Gehan-Wilcoxon Test           Cox-Mantel Test
  W         -24.000             U         -2.8306
  VAR(W)     152.73             I          1.6037
  Z           -1.94             C           -2.24
  P          0.0521             P          0.0254

Logrank Test                  Peto-Wilcoxon Test
  S         -2.8306             S         -2.1667
  VAR(S)     2.0583             VAR(S)     1.0795
  L           -1.97             Z           -2.09
  P          0.0485             P          0.0370

Cox's F Test
  F            0.25
  DF          12, 8
  P          0.0305
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Multi-Sample Survival Tests

This procedure computes three nonparametric tests for comparing three or
more survival distributions: Gehan-Wilcoxon Test, Logrank Test, and the
Peto-Wilcoxon Test.  These tests are extensions of the Kruskal-Wallis test
discussed in Chapter 5 and the two-sample survival tests discussed in the
preceding section.  These tests can be used to compare survival times for
censored data.

Specification

Select the variable that contains the survival times and move it to the Time
Variable box.  Select the variable used to indicate whether or not the event
of interest (e.g., death) occurred or not and move it to the Event Variable
box.  Move the variable used to identify the various groups to the Group
Variable box.

Data

Restrictions

The event variable must be an integer or real variable and may only contain
the values 0 and 1.   The group variable may be of any data type.  Real
values are truncated to whole numbers and must be no larger than 99,999. 
Strings are truncated to ten characters.

Example The example data are from Lee (1992, p. 127).  Three different treatments
are given to leukemia patients.  We’re interested in determining whether
differences in remission times exist between the three groups.  The
remission times are given in the table on the next page, and are stored in the
file Sample Data\leukemia.sx.  The variable RELAPSE indicates whether
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each patient relapsed or not.

The analysis is specified using the dialog box on the preceding page.  The
results are shown below.

The p-values for all three tests are larger than 0.05.  The data do not show
significant differences among the three treatments.

CASE    TIME  RELAPSE     TRT      CASE    TIME  RELAPSE     TRT

   1       4        1       1        34      75        1       2

   2       5        1       1        35      99        1       2

   3       9        1       1        36     103        1       2

   4      10        1       1        37     162        1       2

   5      12        1       1        38     169        1       2

   6      13        1       1        39     195        1       2

   7      10        1       1        40     220        1       2

   8      23        1       1        41     161        0       2

   9      28        1       1        42     199        0       2

  10      28        1       1        43     217        0       2

  11      28        1       1        44     245        0       2

  12      29        1       1        45       8        1       3

  13      31        1       1        46      10        1       3

  14      32        1       1        47      11        1       3

  15      37        1       1        48      23        1       3

  16      41        1       1        49      25        1       3

  17      41        1       1        50      25        1       3

  18      57        1       1        51      28        1       3

  19      62        1       1        52      28        1       3

  20      74        1       1        53      31        1       3

  21     100        1       1        54      31        1       3

  22     139        1       1        55      40        1       3

  23      20        0       1        56      48        1       3

  24     258        0       1        57      89        1       3

  25     269        0       1        58     124        1       3

  26       8        1       2        59     143        1       3

  27      10        1       2        60      12        0       3

  28      10        1       2        61     159        0       3

  29      12        1       2        62     190        0       3

  30      14        1       2        63     196        0       3

  31      20        1       2        64     197        0       3

  32      48        1       2        65     205        0       3

  33      70        1       2        66     219        0       3

Multi-Sample Survival Tests

Time Variable:  TIME    
Event Variable: RELAPSE 

             Gehan-Wilcoxon Test         Logrank Test   Peto-Wilcoxon Test

TRT       N        Sum      Mean        Sum      Mean        Sum      Mean

  1      25    -273.00   -10.920     6.6349    0.2654     4.1072    0.1643
  2      19     170.00    8.9474    -3.6934   -0.1944    -2.6586   -0.1399
  3      22     103.00    4.6818    -2.9415   -0.1337    -1.4486   -0.0658

Chi-Square                  3.61                 3.81                 3.46
DF                             2                    2                    2
P                         0.1643               0.1485               0.1769

Chapter 12, Survival Analysis 369



Mantel-Haenzel Test

The Mantel-Haenzel Test is used to compare survival experience between
two groups when adjustments for other prognostic factors are needed.  It’s
often used in clinical and epidemiologic studies as a method of controlling
the effects of confounding variables.  The data are stratified by the
confounding variable and cast into a sequence of 2 X 2 tables.

Specification

The test builds a series of 2 X 2 contingency tables.  The data can be
presented as raw data where each case represents one subject.  Or the data
can be tabulated where each case in the data set represents one cell in the
contingency table.  In the later case, a count variable is needed to supply
Statistix with the counts for each cell of the table.  If your data are already
tabulated, move the variable containing the counts to the Count Variable
box.  If your data are not tabulated, leave the Count Variable box empty.

Move the categorical variable that you want to use to identify the rows of
the 2 X 2 tables to the Row Variable box.  Move the categorical variable
that you want to use to identify the columns to the Column Variable box. 
Move the categorical variable that you want to use to identify the levels of
the confounding factor to the Strata Variable box.

Data

Restrictions

The row, column, and strata variables may be of any data type.  Real values
are truncated to whole numbers and must be no larger than 99,999.  Strings
are truncated to ten characters.  The maximum number of strata is 500.
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Example The example data are from Lee (1992).  Five hundred and ninety-five
people participate in a case control study of the association of cholesterol
and coronary heart disease (CHD).  Among them, 300 people are known to
have CHD and 295 do not.  To find out if elevated cholesterol is
significantly associated with CHD, the investigator decides to control the
effects of smoking.  The study subjects are divided into two strata: smokers
and nonsmokers.  The data are presented below (see Sample Data\CHD.sx).

The data are already tabulated with the counts in the variable COUNT.  The
analysis is specified on the preceding page.  The results are displayed
below. Cholesterol

The results display the frequencies for the stratified 2 X 2 tables including
row and column subtotals.  The rightmost column displays the percent of
the second level for the column variable for each row.  The chi-square for
the Mantel-Haenzel Test is 16.22 with an associated p-value of 0.0001.  We
conclude that elevated cholesterol is significantly associated with CHD
after adjusting for the effects of smoking.

Computation-

al Notes

The computations follow Lee (1992).  We do not use the correction for
continuity.

CASE    COUNT   CHD         CHOLEST     SMOKE     

   1      120   With CHD    Elevated    Smokers   

   2       20   W/O CHD     Elevated    Smokers   

   3       80   With CHD    Normal      Smokers   

   4       60   W/O CHD     Normal      Smokers   

   5       30   With CHD    Elevated    Nonsmokers

   6       60   W/O CHD     Elevated    Nonsmokers

   7       70   With CHD    Normal      Nonsmokers

   8      155   W/O CHD     Normal      Nonsmokers

Mantel-Haenzel Test

     SMOKE                         CHOLEST

                                                               Percent

                   CHD      Normal    Elevated       Total    Elevated

Nonsmokers     W/O CHD         155          60         215        27.9
              With CHD          70          30         100        30.0
                 TOTAL         225          90         315        28.6

   Smokers     W/O CHD          60          20          80        25.0
              With CHD          80         120         200        60.0
                 TOTAL         140         140         280        50.0

Chi-Square    16.22
DF                1
P            0.0001
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Proportional Hazards Regression

This procedure computes Cox’s proportional hazards regression for survival
data.  The model assumes that individuals have hazard functions that are
proportional to one another, that is, that the ratio of the hazard functions for
two individuals does not vary with time.

Proportional hazards regression is computed using the ranks of the survival
times.  While it is useful for studying the relationships among the
covariates, it can’t be used to build prediction equations.

Specification

Select the name of the variable containing the survival times and move it to
the Time Variable box.  Select the variable used to indicate whether or not
the event of interest (e.g., death) occurred or not and move it to the Event
Variable box.  The event variable must be coded 0 if the event did not occur
(i.e., censored observation) and 1 if the event did occur (i.e., uncensored
observation).  Move one or more independent variables to the Independent
Variables box.  The independent variables can be continuous or discrete
variables.  Discrete variable must entered using indicator (0 or 1) variables.

Data

Restrictions

You can include up to 50 independent variables in the model.  Discrete
variables must be coded using indicator (0 or 1) variables.
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Example The example survival data in the table below are from 30 patients with
AML (Lee, 1992, p. 257).  Two possible prognostic factors X1 and X2 are
considered.  X1 is coded 1 if the patient was 50 years old or older, and 0
otherwise.  X2 is coded 1 if cellularity of marrow clot section is 100%, and
0 otherwise.

The analysis is specified on the preceding page.  The results are displayed
below.

The coefficient table lists the regression coefficients, standard errors of the
coefficients, z-statistics (coefficient/standard error), p-values, and relative
risks (e ) for each independent variable.  The z-statistic and thecoefficient

associated p-value tests the null hypothesis that the coefficient equals zero. 
The test for the independent variable X1 is significant at the .05 level.  The
positive sign for the coefficient indicate that the older patients have a higher
risk of dying.  The estimated risk of dying for patients at least 50 years of
age is 2.75 times higher than that for patients less than 50. 

The statistics below the list of regression coefficients are used to test the fit
of the overall model.  The chi-square value given is called the likelihood

CASE    TIME   DIED     X1     X2     CASE    TIME   DIED     X1     X2

   1      18      1      0      0       16       8      1      1      0

   2       9      1      0      1       17       2      1      1      1

   3      28      0      0      0       18      26      0      1      0

   4      31      1      0      1       19      10      1      1      1

   5      39      0      0      1       20       4      1      1      0

   6      19      0      0      1       21       3      1      1      0

   7      45      0      0      1       22       4      1      1      0

   8       6      1      0      1       23      18      1      1      1

   9       8      1      0      1       24       8      1      1      1

  10      15      1      0      1       25       3      1      1      1

  11      23      1      0      0       26      14      1      1      1

  12      28      0      0      0       27       3      1      1      0

  13       7      1      0      1       28      13      1      1      1

  14      12      1      1      0       29      13      1      1      1

  15       9      1      1      0       30      35      0      1      0

Proportional Hazards Regression

Time Variable:  TIME 
Event Variable: DIED 

Variable   Coefficient   Std Error        Z          P  Rel Risk

X1             1.01317     0.45740     2.22     0.0268      2.75
X2             0.35025     0.43917     0.80     0.4252      1.42

Log Likelihood, No Variables   -65.83
Log Likelihood, Model          -63.12
Chi-Square, Overall Model        5.43
DF                                  2
P                              0.0663
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test.  It tests whether the independent variables in the model contribute to
the prediction of survivorship.  The test for this example is almost
significant at the .05 level.

Regression

Results Menu

Once the proportional hazards regression analysis is computed and
displayed, a Results pull-down menu appears on the menu at the top of the
Statistix window.  Click on the Results menu to display the proportional
hazards regression results menu show below.

Select Coefficient Table from the menu to redisplay the regression
coefficient table displayed on the preceding page.  Select Options to return
to the dialog box used to specify the regression model.  The Var-covar of
Betas menu item is described below.

Variance-

Covariance of

Betas

Select this option to obtain the variance-covariance matrix of the regression
coefficient estimates.  The matrix for the AML example are displayed
below.

Computation-

al Notes

Computations follow Kalbfleisch and Prentice (1980).

Variance-Covariance Matrix for Coefficients

                   X1         X2

X1            0.20921
X2            0.16525    0.19287
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C        H        A        P        T        E        R

13

Probability Functions

Statistix offers a number of useful procedures to calculate the probabilities
for various probability distributions and the inverse functions for the stan-
dard normal, the t-distribution, and the F-distribution.  The function names
and arguments are displayed at the left of the dialog box shown below,
which appears when Probability Functions is selected from the Statistics
menu.
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First select the probability function or inverse function you want to use. 
Once you’ve selected a function, the prompts for the arguments appear next
to the four edit controls.  Enter numbers for each of the arguments
displayed.  In the list of function names, the position of the random variable
is usually represented as an x, although there are some minor variations on
this which are described below.  Parameters are indicated in the dialog box
with logical abbreviations.  

After you’ve entered all of the values, press the Go button and the result
will be computed and displayed in the Results list box.

Press the Print All button to print the results.  The entire contents of the
Results list box are printed, then the Results box is emptied.  Press the
Close button to exit the Probability Functions procedure.

The functions are described in detail below.  We use standard notation to
describe the region of the distribution for which the probability is being
calculated.  For example, the expression “Pr (y # X)” represents the
probability of a value of a random variable y equal to or less than some
specified value X.  The inverse functions compute the test statistic for a
lower-tail probability.

BETA (X, A, B)

Lower-Tail Beta Probability Distribution

This function computes Pr (y # X) for a beta random variable y with
parameters A and B.  The beta distribution is very flexible.  The parameters
A and B control the shape of the distribution, the mean of the distribution is
given by A / (A + B).  The beta distribution is sometimes used itself for
tests and several other important distributions are easily derived from it,
such as the t- and F-distributions (Kennedy and Gentle 1980).

The values permitted for X range from 0 to 1.  A and B must be positive,
but they don’t need to be integer values.  The beta distribution can be used
to compute probability values for generalized t and F random variables with
noninteger degrees of freedom—T 1-Tail, T 2-Tail, and F functions require
integer degrees of freedom.
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BINOMIAL (X, N, P)

Lower-Tail Binomial Probability Distribution

This function computes Pr (y # X) for a random variable y from a binomial
distribution with N trials and parameter P.  In many situations, the random
variable is thought of as the number of “successes” out of N independent
trials (i.e., there were N-X “failures”).  The parameter P is the probability of
a success on a particular trial.  In other words, Binomial computes the
probability of observing X or fewer successes out of N trials when the
success rate per trial is P.

X and N must be specified as integers.  The parameter P must be between
zero and one.  To find the upper-tail distribution, you can use the
relationship Pr (y > X) = 1 - Pr (y # X).

CHI-SQUARE (X, DF)

Upper-Tail Chi-Square Probability Distribution

This function computes Pr (y $ X) for a random variable y from a central
chi-square distribution with DF degrees of freedom.  In other words, it
computes the probability of a value equal to or larger than X.  The typical
chi-square tests in goodness-of-fit analyses use the upper-tail probabilities.  
Use the relationship Pr (y < X) = 1 - Pr (y $ X) if you want a lower-tail
probability.

X must be a positive number and the degrees of freedom must be a positive
integer.

CORRELATION (X, N)

Two-Tailed Probability Distribution for the Correlation Coefficient

This function computes Pr (*y* $ *X*) for a random variable y, where y is
a simple (Pearson) correlation coefficient computed from N pairs of data. 
This distribution is appropriate for testing the null hypothesis that the
correlation coefficient is equal to zero; the distribution being computed
assumes the true correlation coefficient is zero.  Snedecor and Cochran
(1980, sect. 10.5) discuss the application of this procedure and the
assumptions required.  This procedure is equivalent to testing the
hypothesis that the slope of the line is equal to zero in simple linear
regression; the assumptions required are the same.
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The values permitted for X range between -1 and 1.  The number of pairs N
must be a positive integer greater than two.

F (X, DFNUM, DFDEN)

Upper-Tail F Probability Distribution

This function computes Pr (y $ X) for a random variable y from a central F-
distribution with DFNUM numerator degrees of freedom and DFDEN
denominator degrees of freedom.  In other words, it computes the
probability of a value equal to or larger than the observed X.  The typical F
tests in regression and analysis of variance use the upper-tail probabilities. 
Use the relationship Pr (y < X) = 1 - Pr (y $ X) if you want a lower-tail
probability. 

X must be a positive number and both degrees of freedom must be positive
integers.

F INVERSE (P, DFNUM, DFDEN)

Inverse of the F-Distribution

This function computes the F test statistic for which the probability of a
smaller value is P.

HYPERGEO (X1, X2, N1, N2)

Lower-Tail Hypergeometric Probability Distribution

This function computes Pr (y1 # X1), where y1 is a random variable drawn
from a hypergeometric distribution.  Using the traditional “urn” model, N1
corresponds to the number of red balls initially in the urn, and N2
corresponds to the number of black balls.  Then, y1+y2 balls are randomly
drawn from the urn.  HYPER computes the probability of observing X1 or
fewer red balls in such a sample.

All four parameters must be nonnegative integers.
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NEG-BINOMIAL (N+X, N, P)

Lower-Tail Negative Binomial Probability Distribution

This function computes Pr (N + y # N + X) or equivalently Pr (y # X) for a
random variable y which follows a negative binomial distribution. 
Typically, N+X is referred to as the number of trials required to get N
successes.  The probability of a success on a particular trial is the parameter
p.  In other words, Neg-Binomial computes the probability of requiring
N+X or fewer trials to get N successes.  X is the number of failures
observed before the Nth success.

N+X and N must be positive integers, and N+X must be greater than N. 
The parameter p may range from zero to one.

POISSON (X, LAMBDA)

Lower-Tail Poisson Probability Distribution

This function computes Pr (y # X) for a random variable y from a Poisson
distribution with rate parameter LAMBDA.  In some situations, the random
variable is thought of as the number of random events in some interval of
time or space, and the rate parameter LAMBDA is the average number of
such events expected in the interval.  In other words, POISSON computes
the probability of observing X or fewer events in an interval if the expected
number of events is LAMBDA.  You can find the upper-tail distribution by
using the relationship Pr (y > X) = 1 - Pr (y # X).

X must be an integer value and LAMBDA must be greater than zero.

T 1-TAIL (X, DF)

One-Tailed Probability Value for Student’s T-Distribution

This function computes Pr (y # X) for X # 0, and Pr (y $ X) for X > 0 for a
random variable y from a central t-distribution with DF degrees of freedom. 
In other words, T 1-Tail computes the probability of a t value equal to or
more extreme than X, taking into account the sign of X.  This is often called
the one-tailed significance of X.

DF must be a positive integer value.
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T 2-TAIL (X, DF)

Two-Tailed Probability Value for Student’s T-Distribution

This function computes Pr (*y* $ *X*) for a random variable y from a
central t-distribution with DF degrees of freedom.  In other words, T 2-Tail
computes the probability of a t value with an absolute value equal to or
larger than the absolute value of X.  This is often called the two-tailed
significance of X.  

DF must be a positive integer value.

T INVERSE (P, DF)

Inverse of the Student’s T-Distribution

This function computes the Students’s t test statistic for which the
probability of a smaller value is P.

Z 1-TAIL (X)

One-Tailed Probability Value for the Standard Normal Distribution

This function computes Pr (y # X) for X # 0, and Pr (y > X) for X > 0 for a
standard normal random variable y.  In other words, Z 1-Tail computes the
probability of a value equal to or more extreme than X, taking into account
the sign of X.  This is often called the one-tailed significance of X.  A
statistic with a standard normal distribution is often referred to as a Z
statistic, and hence the function name.  

A standard normal distribution has a mean of zero and a variance of one.  A
normally distributed statistic can be transformed to standard normal form by
subtracting the mean and then dividing by the standard deviation.

Z 2-TAIL (X)

Two-Tailed Probability Value for the Standard Normal Distribution

This function computes Pr (*y* $ *X*) for a standard normal random
variable y.  In other words, Z 2-Tail computes the probability of a value
with an absolute value equal to or larger than the absolute value of X.  This
is often called the two-tailed significance of X.  A statistic with a standard
normal distribution is often referred to as a Z statistic, and hence the
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function name.

A standard normal distribution has a mean of zero and a variance of one.  A
normally distributed statistic can be transformed to standard normal form by
subtracting the mean and then dividing by the standard deviation.

Z INVERSE (P)

Inverse of the Standard Normal Distribution

Computation-

al Notes

This function computes the standard normal value z for which the
probability of a smaller value is P.

Three key functions are used to generate the various probabilities—the error
function, the log gamma function, and the incomplete beta function.  The
error function is patterned after a routine suggested by Kennedy and Gentle
(1980).  The method used to calculate the log gamma function is similar to
that used at the University of Wisconsin computer center (Reference
Manual 1410 - Probability Distribution Functions).  Representing the
gamma function as G(X), an asymptotic expansion is used directly when
X$8.  Otherwise, the relationship G(X + 1) = XG(X) is applied until the
expansion can be used.  The procedure for computing the incomplete beta
function is patterned after the IMSL routine MDBETA, which is discussed
in Kennedy and Gentle (1980).  To speed up computation, a large sample
approximation for the incomplete beta function is used for certain “safe”
parameter values (Abramowitz and Stegun, eq. 26.5.21).

All the probability functions are based on relatively simple functions of
these three functions.  Consult Kennedy and Gentle (1980) for further
detail.
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insert variables 25
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All-pairwise comparisons 260
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Analysis of variance 225
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balanced lattice design 235
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completely randomized design 227
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means and standard errors 259
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multiple error terms 255
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plots 274
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randomized complete block 229
repeated measures design 248
residuals 277
split-plot design 241
split-split-plot design 245
strip-plot design 243
strip-split-plot design 247
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Arcsin function 55
Arcsin-square root transformation 55
Arctan function 55
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Arithmetic expressions 49
Association tests 279
Atkinson's score 56
Attributes control chart 332
Autocorrelation 302, 312
Autocorrelation in regression 172
Autocorrelation, partial 314
Automatic format 46, 90, 97

Backup files 16
Balanced lattice design 235
Bar chart 117
Bartlett's test 144, 229
Best subset regressions 189
Beta probability function 376
Binomial probability function 377
Bonferroni's multiple comparisons 265
Boolean expressions 51
Box and whisker plot 115
Box Jenkins 308, 324
Box plot 115
Breakdown 123
Built-in functions 54
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Cat function 56
Censored data 357
Chi-square probability function 377
Chi-square test 282
cholesterol.sx 103
Close file 65
Cochran's Q statistic 144, 229
Coefficient of variation 104, 228, 243
Collinearity 169, 223
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Column format 45

automatic 46
decimal 46
exponential 46
fixed 46

Column width 45
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Completely randomized AOV 227
Concatenate strings 50
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Contingency tables

Chi-square test 282
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log-linear models 293
Mantel-Haenzel text 370
McNemar's symmetry test 288
two by two 291

Contrasts 269
Control chart 331
Control limits 332
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to dates 33, 57
to numbers 33, 59

Cook's distance 178
Copy 23
Copy function 57
Correlation coefficient probability function

377
Correlations 161

partial 163

Pearson 161
Spearman 299

Cos function 57
Count function 57
Covariates 256
Cox's F test 365
Cox-Mantel test 365
Cox’s proportional hazards regression 372
Cp 185, 191
Cross correlation plot 315
Cross tabulation 119
Cumsum function 57
Cut 23
CV 104

Data
printing 95
saving 66
viewing 95

Data entry 21, 25
Data menu 19
Data set label 47
Data set size 6
Data types 5, 25
Date arithmetic 50
Date data type 6
Date format 16
Date function 33, 57
Date variables 22, 25
Day function 57
Dayofweek function 57
dBase files

export 88
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Decimal format 46, 90, 97
Decision interval cusum 57
Delete cases 27
Delete function 57
Delete omitted cases 27
Delete selected cells 28
Delete variables 28
Descriptive statistics 104
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Deviance tests 199, 209, 213
Dialog boxes 8
Diff function 57
Division 49
Dummy variables 35, 208
Duncan's multiple comparisons 266
Dunnett's multiple comparisons 267
Durbin-Watson test 171

Edit 23
Eigenvalues-principal components 221
Enhanced metafile 13
Equality of variance 143, 229
Error bar chart 117
EWMA chart 355
Excel files

export 87
import 78

Exiting Statistix 4, 99
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Exponential format 46, 90, 97
Exponential smoothing 320
Exponentiation 49
Export 85

Access, dBase, & Paradox 88
Excel, 1-2-3, Quattro Pro 87
text files 89

F-distribution, inverse function 378
F-probability function 378
Factorial design 238
Factorial function 57
Field width 90, 97
File info report 94
File menu 63
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log 92
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save 66
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print 96
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Functions 54
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Gehan-Wilcoxon test 365, 368
General AOV/AOCV 252
Generalized linear models 213
Geomean function 58
Goodness-of-fit tests 279
Graph preferences 16
Graph titles 14
Grid lines 17

Hazard function 358
Hazard function plot 363
Heterogeneity, test of 282
Histogram 108
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Hosmer-Lemeshow statistic 201
Hsu's multiple comparisons 268
Hypergeometric probability function 378

I chart 351
Import 77

Access, dBase, & Paradox 80
Excel, 1-2-3, Quattro Pro 78
format statement 82
single variable 85
text files 81

Indicator variables 35, 208
Infinite parameter estimates 216
Insert cases 25
Insert function 58
Insert variables 25
Installing Statistix 3
Integer data type 6
Integer format 90, 97
Integer variables 22, 25
Iterative proportional fitting 294
Iterative reweighted least squares 197

Kaplan-Meier 360
Kendall's coefficient of concordance 152
Kendall's tau 300
Kolmogorov-Smirnov test 286
Kruskal-Wallis one-way AOV 147

Labels 47
data set 47
value 48
variable 47

Lag function 58
Latin square design 232
Lattice design 235
Least significant difference 264
Length function 58
Leverage, regression 174, 177
Likelihood ratio tests 294
Linear contrasts 269

Linear models 159
Linear regression 167

best model selection 186
coefficients 168
Durbin-Watson test 171
forced through origin 167
missing values 180
predicted values 172
residuals 176
sensitivity 181
stepwise 192
stepwise AOV table 184
variance-covariance 185
weighted 167

Ln function 58
Log file 92
Log function 58
Log odds ratio 292
Log-linear models 293
Logical expressions 49, 51
Logical operators 51
Logistic regression 196, 211

classification table 200
Hosmer-Lemeshow statistic 201
odds ratios 202
stepwise 203

Logit transformation 198
Logrank test 365, 368
Lotus 1-2-3 files

export 87
import 78

Lowcase function 58
LSD 264

M function 58
Mallow's Cp statistic 184, 185, 191
Mann-Whitney U statistic 139
Mantel-Haenzel test 370
Max function 58
Maximum 104
Maximum likelihood 196
McNemar's symmetry test 288
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Mean
analysis of variance 143
breakdown 123
descriptive statistics 104
error bar chart 117

Mean function 58
Median 104, 114
Median absolute deviation 104
Median function 58
Median survival time 362
Median test 140
Menus 3
Merge

cases 69
labels, transformations, etc. 71
variables 70

Metafile 13
Min function 58
Minimum 104
Missing values 7, 21

arithmetic and logical expressions 53
M function 58

Modulo function 58
Month function 58
Moving averages 317
Moving range chart 353
MR chart 353
Multi-sample survival tests 368
Multicollinearity 169, 223
Multiple comparisons 260
Multiple regression 167
Multiplication 49

Negative binomial probability function 379
Nested break down 123
New 65
Nonadditivity in analysis of variance 231,

234
Nonconformities 339
Nonconformities per unit 341
Nonparametric tests 125
Normal probability plot 305

Normality test 304
Normalize function 58
Np chart 337
NRandom function 59
Number function 33, 59

Odds ratios 202, 292
Omit/select/restore cases 40
One-sample t test 127
One-way AOV 142
Open 65
Options 13
Ordering variables 44
Outlier in regression 179

P chart 335
Paired t test 128
Paired tests 126
Paradox files

export 88
import 80

Pareto chart 333
Partial autocorrelation 314
Partial correlations 163
Paste 23
Pearson correlations 161
Percentile function 59
Percentiles 114
Peto-Wilcoxon test 365, 368
Pi function 59
Pie chart 110
Poisson probability function 379
Poisson regression 206, 211
Polynomial contrasts 273
Pos function 59
Power function 59
Precedence rules 50, 52
Predicted values, regression 172, 177
Preferences 15
Principal components 222
Print 95
Printer setup 99
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reports and graphs 12

Printing Statistix data 95
Probability functions 375
Probit regression 203
Product limit estimates 360
Proportion test 157
Proportional hazards regression 372

coefficient table 373
likelihood test 373
variance-covariance 374

Proportions 196, 211

Quality control 331
Quartiles 104
Quattro Pro files

export 87
import 78

R chart 347
R-squared 186, 191
Random function 59
Randomized complete block design 229
Randomness test 302
Rank correlations 299
Rank function 59
Rank sum test 137
Rankit plot 305
Real data type 5
Real variables 22, 25
Recode 34
References 383
Regression

best subsets 189
linear 167
logistic 196
Poisson 206
stepwise linear 192
stepwise logistic 203

Regression coefficients 168
Regression options 169
Relational operators 51

Renaming variables 44
Reordering variables 44
Repeated measures design 248
Reports, printing and saving 12
Residual plots

analysis of variance 274
regression 175

Residuals
analysis of variance 277
regression 176

Restore 40
Results menu 11, 13
Results window 11
Round function 59
Row functions 59
Rowcount function 59
Rowmax function 59
Rowmean function 59
Rowmedian function 60
Rowmin function 60
RowSD function 60
Rowtotal function 60
Runs test 302

S chart 349
SARIMA 324
Save 66
Save As 67
Saving

data 66
reports and graphs 12

Scatter plot 121
Scheffe's multiple comparisons 265
Scientific notation 46
SD function 60
SelCase function 60
Select cases 40
Sensitivity, regression coefficients 181
Shapiro-Wilk normality test 304
Sidak's multiple comparisons 265
Sign test 130
Sin function 60
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Slopes 169
Smirnov test 286
Sorting cases 42
SPC 331
Spearman correlations 299
Split-plot design 241
Split-split-plot design 245
Spreadsheet window 21
Sqr function 60
Sqrt function 60
Stack variables 36
Standard deviation 104
Standard error of mean 104
Standard normal distribution, inverse

function 381
Standard normal probability function 380
Standardized residual, regression 178
Statistical process control 331
Stem and leaf plot 112
Stepwise linear regression 192
Stepwise logistic regression 203
String arithmetic 50
String data type 6
String function 60
String variables 22, 25
Strip-plot design 243
Strip-split-plot design 247
Student's t distribution, inverse function 380
Student's t probability function 379
Student-Newman-Keuls 266
Studentize function 60
Subtraction 49
Summary file 73
Summary statistics 101
Survival analysis 357
Survival time 357

median 362
percentiles 362

Survivorship function 358
Survivorship function plot 363
Switching between windows 14

T test
one-sample 127
paired 128
two-sample 134

Tan function 60
Template 71
Text files 81

comment lines 85
export 89
import 81
view 93

Time series 307
Time series plot 310

exponential smoothing 323
SARIMA 329

Titles 14
Total function 60
Transformations 30

converting variable types 32
date constants 32
equality tests 53
functions 54
if-then-else 32
missing values 33
omitted cases 34
simple assignment 31
string constants 32

Transpose 38
Trunc function 61
Truth table 52
Tukey's multiple comparisons 265
Tukey's nonadditivity test 231, 234
Two by two contingency tables 291
Two Stage Least Squares Regression 217
Two-sample survival tests 365
Two-sample t test 134

U chart 341
Unitize function 61
Unstack variables 38
Unusualness values 174
Upcase function 61
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Value labels 48
VAR1 .. VAR99 syntax 26
Variable format 45
Variable labels 47
Variable name order 15
Variable name selection 9
Variable names 5
Variable order 44
Variable types 5, 22, 25
Variables control chart 332
Variance function 61
Variance inflation factor 169
Variance-covariance 165
View text file 93

Weighted least squares 167
Weighted regression 167
Wilcoxon rank sum test 137
Wilcoxon signed rank test 132
Windows metafile 13

X bar chart 343
X chart 351

Year function 61

ZInverse function 61
ZProb function 61
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